

OTO-UV

Diffuseur UV architectural à jet hélicoïdal

OTO-UV

Diffuseur UV architectural à jet hélicoïdal

Les diffuseurs UV aident à prévenir la propagation des virus et des bactéries à travers les systèmes de ventilation

Solution 3-en-1 combinant le traitement de l'air par lumière UV-C, la filtration de l'air et un meilleur mélange de l'air dans la pièce

Désactivation simple-passe des virus et bactéries aéroportés

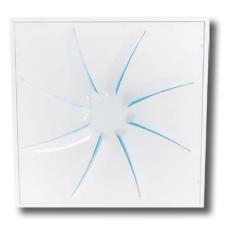
Testé avec le vrai virus SARS-CoV-2 dans un laboratoire indépendant, atteignant un taux de désactivation simple-passe de 99.949% pour 458 pcm

La face amovible permet un changement ergonomique du filtre et un entretien simple

Débit d'air fixe à 360 degrés, optimal entre 100 pcm et 325 pcm

Convient aux nouveaux bâtiments et aux bâtiments de constructions plus anciennes

Le jet hélicoïdal à grande vitesse permet un mélange efficace de l'air ventilé avec l'air ambiant


Des courbes et un design attrayants sur le plan architectural

Pour plafonds suspendus, ouverts ou fermés

Solution à haute efficacité énergétique

OTO-UV

BREVET DÉPOSÉ

Les diffuseurs UV d'EffectiV™ sont une solution innovatrice traitant l'air recyclé dans les bâtiments commerciaux et institutionnels. C'est une solution 3-en-1 qui désactive les virus et bactéries présents dans l'air grâce aux rayons UVC, filtre l'air de la poussière et autres particules plus larges grâce à un filtre MERV-9, puis améliore l'efficacité de diffusion d'air et la ventilation dans la pièce. En purifiant l'air à la toute fin des conduits et en optimisant l'intensité lumineuse et le temps d'exposition des microbes aux rayons UV, les diffuseurs UV peuvent atteindre de très hauts taux de désactivation des virus et bactéries aéroportés.

Les diffuseurs UV représentent une solution pratique adaptée à la quasi-totalité des bâtiments existants, sans nécessiter d'améliorations ou remplacement des systèmes de ventilation en place. Ils procurent un accès facile pour l'entretien et le remplacement du filtre. Ils sont aussi une solution de traitement de l'air à très haute efficacité énergétique.

Les diffuseurs réglables OTO-UV sont conçus pour les systèmes de climatisation, de ventilation et de régulation différentielle de température jusqu'à 12°C (22°F). Ils peuvent être fixés ou suspendus aux faux plafonds, ou sur des cloisons sèches, à un niveau de 2,6 à 4 mètres (8.5 à 13 pieds) de hauteur. Les diffuseurs OTO permettent une variation de débit de 60% tout en conservant un flux d'air stable.

Le design des diffuseurs OTO permet un flux d'air uniforme depuis chaque ouverture du système de ventilation. La configuration radiale des huit fentes courbées produit un système de jet d'air rotatif. La diffusion tourbillonnaire combinée à une vitesse de diffusion élevée se traduit par un mélange très efficace de l'air ventilé avec l'air ambiant, un taux d'induction élevé et une stratification de l'air réduite.

Grâce à la collaboration de MADEL avec Lievore, Altherr & Molina, le design original d'OTO allie courbes élégantes et haute performance.

Applications

Écoles

Etablissements de santé, hôpitaux, cliniques dentaires

CHSLD


Bureaux

Hospitalité, restaurants

Commerce de détail, centres commerciaux

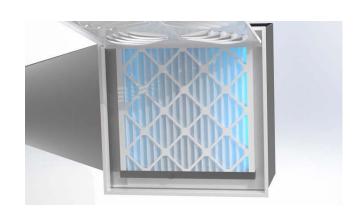
PRÉVENIR LA PROPAGATION DU VIRUS ET DE BACTÉRIES À TRAVERS LES SYSTÈMES DE VENTILATION D'IMMEUBLES COMMERCIAUX

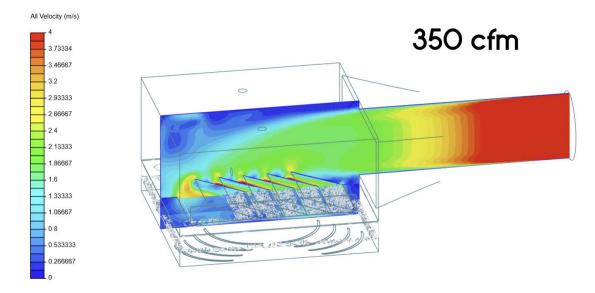
Les particules de virus en suspension dans l'air sont parfois trop petites pour être attrapées des filtres standards et peuvent se propager à travers les systèmes de ventilation des bâtiments commerciaux et institutionnels. Ce sont aussi ces particules plus petites qui voyagent le plus loin dans le système respiratoire des personnes contaminées, et donc les particules les plus dangereuses pour la santé des humains.

Les diffuseurs UV distribuent dans les pièces du batiment un air traité pour neutraliser les virus et bactéries aéroportés. L'irradiation des microbes par UV-C présente une efficacité simple-passe variant selon le débit d'air. Les diffuseurs sont situés à la toute fin du conduit par lequel l'air circule avant d'entrer dans la pièce, ce qui rend impossible toute recontamination de l'air suite au traitement. Une fois les diffuseurs UV installés dans un espace clos, ceux-ci ont l'effet d'un bouclier protégeant cette pièce de l'air recyclé qui aurait pu être contaminé ailleurs dans le bâtiment.

Les diffuseurs UV peuvent remplacer les diffuseurs déjà existants dans un bâtiment entier ou être installés dans un seul espace. Facile d'accès, les diffuseurs plafonniers représentent pour les propriétaires et les occupants d'immeubles une solution très simple, facile à mettre en œuvre et facile d'entretien.

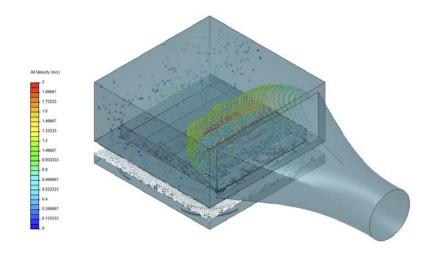
L'usage du présent dispositif complète les pratiques courantes en matière de lutte contre l'infection et ne les remplace pas. Les utilisateurs doivent continuer de suivre toutes les pratiques en vigueur, notamment celles liées au nettoyage et à la désinfection des surfaces de l'environnement.

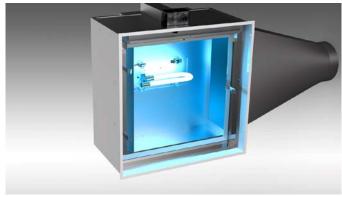



Comment fonctionnent les diffuseurs UV

1. Filtration de l'air

Les diffuseurs UV intègrent un filtre MERV-9 ou MERV-7 résistant aux UV pour stopper les particules les plus larges, y compris la poussière, les spores et les acariens, allergènes et autres contaminants, améliorant ainsi la qualité de l'air.

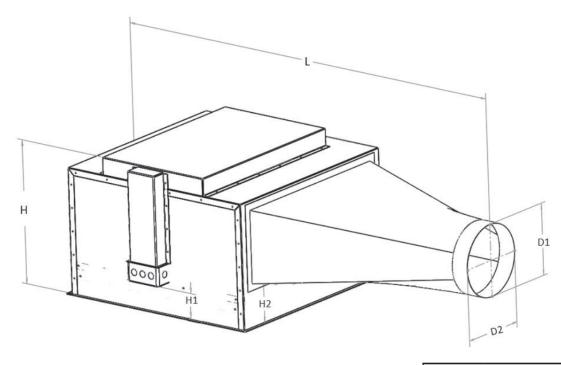

Le filtre aide également à pressuriser l'air à l'intérieur du plénum et à ralentir son débit.

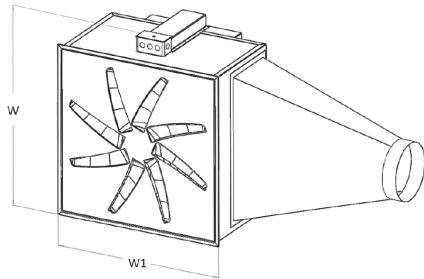


2. Traitement de l'air par lumière UV-C

Les diffuseurs UV intègrent également une lampe UV-C pour irradier les virus et les bactéries. Le débit de l'air étant nettement moins rapide dans le diffuseur que dans le conduit, nous multiplions le temps d'exposition des microbes à la lumière UV-C et donc leur neutralisation par un facteur de 2 à 8 fois.

L'emplacement de la lampe UV, la réflexion de la lumière, la trajectoire du flux de l'air, la forme et la dimension du plenum, et même les matériaux : tout a été pensé afin d'améliorer le traitement de l'air et l'efficacité d'irradiation des microbes.




3. Ventilation améliorée

Les diffuseurs à jet hélicoïdal à haute induction OTO-UV offre une vitesse élevée de diffusion de l'air et fournissent un meilleur mélange entre l'air ventilé avec l'air ambiant (par rapport aux autres diffuseurs courants). La résultante en est une élimination plus rapide des contaminants. Atout non négligeable, cette ventilation veille aussi au confort thermique des utilisateurs. Cet air, meilleur à tous points de vue, aide aussi à optimiser les performances du système HVAC et à réduire la consommation d'énergie.

Dimensions

Dimensions					
W 25 ² / ₃ "					
W1	23 7/8"				
Н	15 7/8"				
H1	3 9/16"				
H2	4 3/4"				
L	47 1/2"				

Duct Diameter	D1	D2
6"	5 7/8"	5 7/8"
7"	6 ⁷ /8"	6 ⁷ /8"
8"	7 7/8"	7 7/8"
10"	11"	8"
12"	16"	8"

Sécurité

Les diffuseurs UV sont certifiés UL pour la sécurité, incluant la sécurité du système électrique et en ce qui a trait aux émissions de rayons UV. La lumière UV-C est contenue à l'intérieur du diffuseur afin d'assurer la sécurité des occupants dans la pièce. Des interrupteurs de contacts ont aussi été installés afin de protéger le personnel de maintenance. La lampe UV fabriquée en quartz de haute qualité n'émet pas d'ozone ni autres particules pouvant être néfastes pour la santé. Les diffuseurs UV sont d'ailleurs certifiés Zéro émissions d'ozone par UL.

Spécifications mécaniques

Poids du produit assemblé	34 lbs
Face avec pentures	Oui
Face amovible	Oui
Remplacement du filtre par la face	Oui
Remplacement de la lampe UV par la face	Oui

Spécifications électriques

Voltage	120 V / 240 V
Wattage du diffuseur UV	40 W
Interrupteur de sécurité - face ouverte	Oui
Interrupteur de sécurité - barrière UV non présente	Oui

Spécifications Lampe UV

Puissance UV 253.7nm - 100hr (par lampe)	12.0 W
Intensité @ 1m (par lampe)	90 μW/cm2
UVA	Non
UVB	Non
UVC	Oui
Émission d'ozone	Non
Durée de vie de la lampe UV	17,000 heures
Diamètre de la lampe	T6 (19 mm)
Géometrie de la lampe	`J'
Type de lampe	Quartz

Options de filtres pour Diffuseurs UV

UVFILTER-W-M9 Filtre à pli blanc MERV-9 résistant aux UV - 20" x 20" x 2"

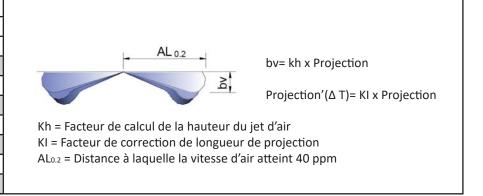
UVFILTER-W-M9	
Minimum Efficiency Rating Value (AHRAE 52.2)	MERV 9 @ 1968 pcm
Résistance initiale @ 492 pcm	0.021 in.w.g
Certification UL	Oui

UVFILTER-C-M7 Filtre à pli au charbon résistant aux UV MERV-7 - 20" x 20" x 2"

UVFILTER-C-M7				
Minimum Efficiency Rating Value (AHRAE 52.2)	MERV 7 @ 1968 pcm			
Résistance initiale @ 500 pcm	0.08 in.w.g			
Certification UL	Oui			

Données de performance de diffusion

Dim	(pi2)		PCM max	
24"x 24" (605mm)	0.0427	100	325	


Dia	Vitesse au collet (ppm)	200	300	400	500	600	700	800	1000
Conduit (pouces)	Pression de vitesse (H2O)	0.002	0.006	0.01	0.016	0.022	0.031	0.041	.062
	PCM			79	98	118	137	157	196
	Perte de pression (H2O) - Filtre Blanc			0.014	0.020	0.027	0.036	0.046	0.068
	Perte de pression (H2O) - Filtre Charbon			0.021	0.028	0.037	0.047	0.059	0.084
6	NC			< 15	< 15	< 15	< 15	< 15	20
	Projection (pi) - Effet Coanda			2-3-3	2-3-4	2-3-5	2-4-6	3-4-6	3-5-8
	Projection (pi) - Sans plafond			1-2-3	1-2-3	1-2-7	2-3-4	2-3-5	2-4-6
	PCM		105	140	175	209	244	279	349
	Perte de pression (H2O) - Filtre Blanc		0.022	0.037	0.055	0.077	0.102	0.131	0.201
8	Perte de pression (H2O) - Filtre Charbon		0.031	0.049	0.070	0.094	0.122	0.153	0.227
	NC		< 15	< 15	17	22	26	30	36
	Projection (pi) - Effet Coanda		2-3-4	2-4-6	3-5-7	3-6-8	4-6-10	4-7-11	6-9-14
	Projection (pi) - Sans plafond		1-2-3	2-3-4	2-4-5	3-4-6	3-5-7	3-6-8	4-7-10
	PCM	109	164	218	273	327	382	436	545
	Perte de pression (H2O) - Filtre Blanc	0.024	0.049	0.083	0.126	0.177	0.238	0.307	0.472
10	Perte de pression (H2O) - Filtre Charbon	0.033	0.063	0.100	0.148	0.202	0.267	0.339	0.511
10	NC	< 15	16	23	29	34	38	41	47
	Projection (pi) - Effet Coanda	2-3-4	3-4-7	4-6-9	4-7-11	5-9-13	6-10-15	7-12-17	9-14-22
	Projection (pi) - Sans plafond	1-2-3	2-3-5	3-4-7	3-5-8	4-7-10	5-8-11	5-9-13	6-11-16

Notes de performance

- Valeur NC basée sur une absorption de la pièce de 10 dB.
- Les valeurs de projection sont basées sur des vitesses d'air terminales respectives de **100, 60 et 40 ppm** en isotherme.
- Les valeurs de perte de pression sont pour la combinaison diffuseur + plénum + filtre.

Facteurs de correction de projection selon température pour OTO-UV

Facteur de correction Delta T					
Δ T (F)	Kh	KI			
0	0.04	1			
-2	0.045	0.945			
-4	0.05	0.91			
-6	0.055	0.87			
-8	0.06	0.84			
-10	0.068	0.82			
-12	0.076	0.805			
-15	0.089	0.78			

Taux d'induction and ratio Delta T pour OTO-UV

Ratios			
Projection (pi)	i	Delta T Ratio	Total air induit = pcm alimenté * i
4	7	0.12	Total air induit: volume d'air mélangé pour une projection donnée
6	12	0.057	
8	14	0.04	
10	18	0.029	Delta T (Projection) = Delta T (Source) * Delta T Ratio
15	28	0.017	Delta I (110)cetton) - Delta I (30arce) Delta I Natio
20	38	-	Delta T (Source) = T (Pièce) - T (Source)
25	47	-	Delta T (Projection) = T (Pièce) - T (Projection)
30	58	-	

Performance d'irradiation des microbes par lumière UV-C - 100 à 300 PCM (1/2)

Bio-contaminants	100 pcm	150 pcm	200 pcm	250 pcm	300 pcm
Mycobacterium tuberculosis	>99.9999%	>99.9999%	>99.9999%	>99.9999%	>99.9999%
Legionella pneumophila	>99.9999%	>99.9999%	>99.9999%	>99.9999%	>99.9999%
Candida auris	>99.9999%	>99.9999%	>99.9999%	>99.9999%	>99.9999%
SARS-CoV-1	>99.9999%	>99.9999%	>99.9999%	>99.9999%	99.9999%
Proteus mirabilis	>99.9999%	>99.9999%	>99.9999%	99.9996%	99.9967%
Mycoplasma pneumoniae	>99.9999%	>99.9999%	>99.9999%	99.9994%	99.9952%
Listeria monocytogenes	>99.9999%	>99.9999%	99.9996%	99.9948%	99.9729%
Salmonella	>99.9999%	>99.9999%	99.9993%	99.9922%	99.9623%
Aeromonas	>99.9999%	>99.9999%	99.9981%	99.9832%	99.9285%
SARS-CoV-2	>99.9999%	99.9998%	99.9955%	99.9666%	99.8731%
Ricksettsia prowazekii	>99.9999%	99.9996%	99.9919%	99.9465%	99.8122%
Staphilococcus epidermis	>99.9999%	99.9990%	99.9829%	99.9030%	99.6916%
E. Coli	>99.9999%	99.9985%	99.9764%	99.8746%	99.6182%
Yersinia enterocolitica	>99.9999%	99.9982%	99.9729%	99.8599%	99.5811%
Coxiella burnetii	>99.9999%	99.9982%	99.9729%	99.8598%	99.5809%
Lactobacillus reuteri	>99.9999%	99.9982%	99.9729%	99.8598%	99.5809%
Vaccinia virus	>99.9999%	99.9982%	99.9721%	99.8568%	99.5734%
Smallpox	>99.9999%	99.9982%	99.9718%	99.8555%	99.5703%
Newcastle disease	>99.9999%	99.9965%	99.9549%	99.7894%	99.4119%
Acinetobacter baumanii	99.9999%	99.9892%	99.8938%	99.5824%	98.9594%
Influenza A virus	99.9997%	99.9794%	99.8282%	99.3862%	98.5655%
MRSA	99.9994%	99.9684%	99.7632%	99.2064%	98.2232%
Coxsachievirus	99.9993%	99.9636%	99.7364%	99.1355%	98.0918%
Avian Influenza virus	99.9988%	99.9480%	99.6556%	98.9292%	97.7193%
Measle virus	99.9987%	99.9445%	99.6386%	98.8872%	97.6449%
Pseudomonas aeruginosa	99.9986%	99.9429%	99.6307%	98.8680%	97.6110%
Serratia marcescens	99.9962%	99.8860%	99.3796%	98.2854%	96.6235%
Parvovirus H-1	99.9947%	99.8588%	99.2715%	98.0505%	96.2422%
Proteus vulgaris/mirabilis	99.9729%	99.5809%	98.3529%	96.2556%	93.5263%
Corynebacterium diphteriae	99.9447%	99.3265%	97.6490%	95.0227%	91.7934%
Ustilago zeae	99.9124%	99.0848%	97.0409%	94.0170%	90.4332%
Streptococcus pyogenes	99.8629%	98.7659%	96.2974%	92.8418%	88.8911%
Haemophilus influenza	99.8354%	98.6058%	95.9427%	92.2982%	88.1925%
Yeast	99.7885%	98.3526%	95.4016%	91.4869%	87.1647%
Klebsiella pneumoniae	99.7159%	97.9941%	94.6699%	90.4195%	85.8369%
Neisseria catarrhalis/meningitidis	99.6300%	97.6076%	93.9169%	89.3512%	84.5326%
Clostridium tetani	99.3448%	96.4984%	91.9053%	86.6168%	81.2875%
Vancomycin Resistant Enterococcus	98.8704%	94.9656%	89.3717%	83.3593%	77.5624%

Les pourcentages dans cette table représentent le taux minimum anticipé de neutralisation simple-passe, pour l'irradiation par UV-C seulement. L'impact additionnel de la filtration de l'air n'est pas considéré ici.

Performance d'irradiation des microbes par lumière UV-C - 100 à 300 PCM (2/2)

Bio-contaminants	100 cfm	150 cfm	200 cfm	250 cfm	300 cfm
Burkholderia cenocepacia	98.5490%	94.0510%	87.9543%	81.6064%	75.6094%
Adenovirus	98.4594%	93.8085%	87.5879%	81.1602%	75.1174%
Enterobacter cloacae	97.8717%	92.3202%	85.4114%	78.5607%	72.2875%
Reovirus	97.2486%	90.8861%	83.4127%	76.2414%	69.8108%
Norwalk virus	96.1334%	88.5655%	80.3364%	72.7773%	66.1850%
Echovirus	90.3990%	79.0326%	69.0145%	60.8324%	54.2098%
Bacillus Anthacis	83.2521%	69.6164%	59.0759%	51.0690%	44.8787%
Cryptococcus neoformans	83.2521%	69.6164%	59.0759%	51.0690%	44.8787%
Blastomyces dermatidis	82.7981%	69.0697%	58.5248%	50.5427%	44.3850%
Histoplasma capsulatum	82.7981%	69.0697%	58.5248%	50.5427%	44.3850%
Mucor spores	82.7981%	69.0697%	58.5248%	50.5427%	44.3850%
Bacillus subtilis spores	80.9576%	66.9010%	56.3624%	48.4903%	42.4683%
Francisella Tularensis	79.3443%	65.0570%	54.5515%	46.7872%	40.8874%
Fusarium oxysporum	78.1157%	63.6848%	53.2193%	45.5431%	39.7379%
Botrytis cinerea	62.6337%	48.1215%	38.8720%	32.5484%	27.9733%
Rhizopus nigricans	60.1987%	45.8916%	36.9117%	30.8234%	26.4416%
Nocardia asteroides	58.5026%	44.3651%	35.5815%	29.6590%	25.4112%
Penicillium digitatum	53.6181%	40.0808%	31.8957%	26.4573%	22.5925%
Bacillus Cereus spores	45.3095%	33.1233%	26.0470%	21.4466%	18.2218%
Algae blue-green	42.1803%	30.5961%	23.9607%	19.6788%	16.6910%
Streptocuccus Pneumoniae	40.9296%	29.5988%	23.1427%	18.9883%	16.0946%
Penicillium chrysogenum	37.1475%	26.6250%	20.7205%	16.9520%	14.3408%
Trichophyton rubrum	35.5815%	25.4112%	19.7389%	16.1305%	13.6352%
Candida albicans	35.3052%	25.1981%	19.5669%	15.9868%	13.5119%
Mucor mucedo	34.7491%	24.7700%	19.2220%	15.6986%	13.2648%
Clostridium Difficile spores	33.7359%	23.9932%	18.5972%	15.1775%	12.8181%
Cladosporium herbarum	32.6926%	23.1975%	17.9589%	14.6458%	12.3630%
Scopulariopsis brevicaulis	30.7938%	21.7598%	16.8097%	13.6906%	11.5465%
Bacillus Anthacis spores	28.2297%	19.8390%	15.2827%	12.4255%	10.4673%
Aspergillus fumigatus spores	10.4354%	7.0839%	5.3614%	4.3126%	3.6070%
Aspergillus niger spores	7.2164%	4.8707%	3.6757%	2.9516%	2.4658%
Cladosporium wemecki	5.3108%	3.5726%	2.6916%	2.1591%	1.8026%
stachybotrys chartarum	4.2922%	2.8823%	2.1696%	1.7395%	1.4517%
Myxobolus cerebralis	2.4310%	1.6273%	1.2230%	0.9796%	0.8170%
Moraxella	2.3265%	1.5571%	1.1701%	0.9372%	0.7816%

Les pourcentages dans cette table représentent le taux minimum anticipé de neutralisation simple-passe, pour l'irradiation par UV-C seulement. L'impact additionnel de la filtration de l'air n'est pas considéré ici.

Performance d'irradiation des microbes par lumière UV-C - 350 à 500 PCM (1/2)

Bio-contaminants	350 cfm	400 cfm	450 cfm	500 cfm
Mycobacterium tuberculosis	>99.9999%	99.9997%	99.9987%	99.9959%
Legionella pneumophila	99.9999%	99.9993%	99.9975%	99.9929%
Candida auris	99.9999%	99.9994%	99.9976%	99.9930%
SARS-CoV-1	99.9990%	99.9958%	99.9872%	99.9687%
Proteus mirabilis	99.9854%	99.9561%	99.8963%	99.7939%
Mycoplasma pneumoniae	99.9803%	99.9428%	99.8688%	99.7453%
Listeria monocytogenes	99.9124%	99.7889%	99.5814%	99.2762%
Salmonella	99.8836%	99.7293%	99.4778%	99.1168%
Aeromonas	99.7989%	99.5630%	99.2008%	98.7046%
SARS-CoV-2	99.6710%	99.3277%	98.8280%	98.1717%
Ricksettsia prowazekii	99.5395%	99.0977%	98.4776%	97.6865%
Staphilococcus epidermis	99.2956%	98.6914%	97.8813%	96.8850%
E. Coli	99.1541%	98.4639%	97.5570%	96.4590%
Yersinia enterocolitica	99.0841%	98.3533%	97.4012%	96.2564%
Coxiella burnetii	99.0838%	98.3529%	97.4006%	96.2556%
Lactobacillus reuteri	99.0838%	98.3529%	97.4006%	96.2556%
Vaccinia virus	99.0697%	98.3307%	97.3695%	96.2153%
Smallpox	99.0640%	98.3217%	97.3570%	96.1991%
Newcastle disease	98.7751%	97.8763%	96.7418%	95.4114%
Acinetobacter baumanii	98.0022%	96.7418%	95.2335%	93.5378%
Influenza A virus	97.3695%	95.8549%	94.0961%	92.1652%
MRSA	96.8399%	95.1333%	93.1908%	91.0918%
Coxsachievirus	96.6407%	94.8658%	92.8591%	90.7023%
Avian Influenza virus	96.0858%	94.1311%	91.9576%	89.6522%
Measle virus	95.9767%	93.9881%	91.7837%	89.4510%
Pseudomonas aeruginosa	95.9272%	93.9234%	91.7051%	89.3603%
Serratia marcescens	94.5212%	92.1232%	89.5534%	86.9058%
Parvovirus H-1	93.9950%	91.4650%	88.7809%	86.0376%
Proteus vulgaris/mirabilis	90.4283%	87.1659%	83.8773%	80.6495%
Corynebacterium diphteriae	88.2704%	84.6672%	81.1154%	77.6901%
Ustilago zeae	86.6226%	82.7981%	79.0824%	75.5397%
Streptococcus pyogenes	84.7944%	80.7579%	76.8910%	73.2451%
Haemophilus influenza	83.9783%	79.8572%	75.9320%	72.2479%
Yeast	82.7902%	78.5561%	74.5549%	70.8228%
Klebsiella pneumoniae	81.2751%	76.9130%	72.8291%	69.0476%
Neisseria catarrhalis/meningitidis	79.8064%	75.3360%	71.1855%	67.3675%
Clostridium tetani	76.2254%	71.5489%	67.2844%	63.4170%
Vancomycin Resistant Enterococcus	72.2225%	67.3989%	63.0753%	59.2070%

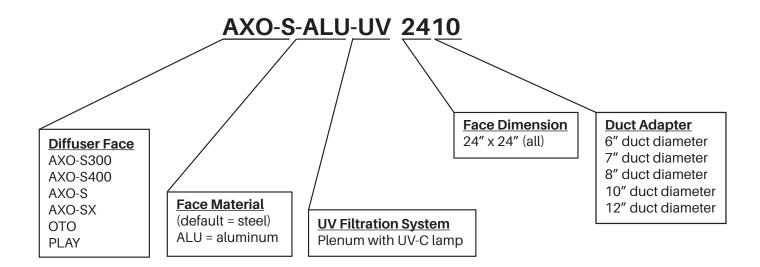
Les pourcentages dans cette table représentent le taux minimum anticipé de neutralisation simple-passe, pour l'irradiation par UV-C seulement. L'impact additionnel de la filtration de l'air n'est pas considéré ici.

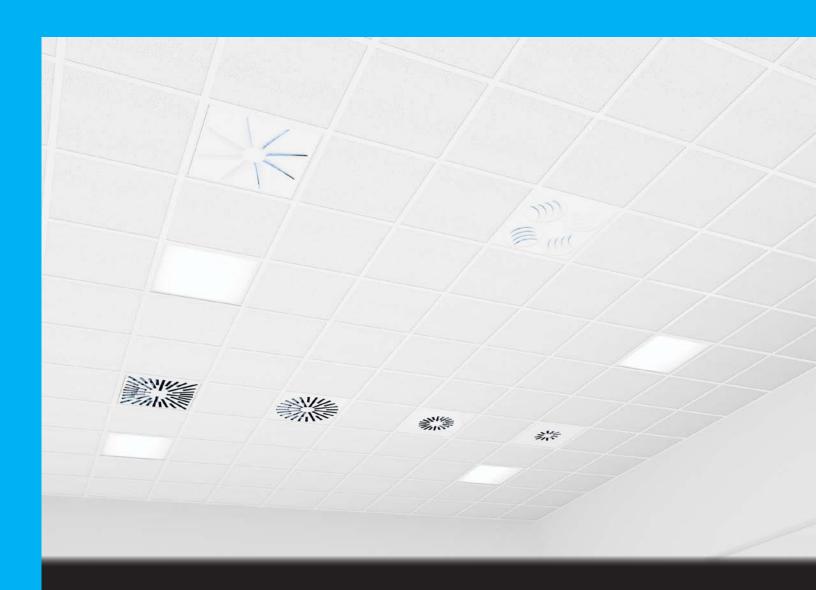
Performance d'irradiation des microbes par lumière UV-C - 350 à 500 PCM (1/2)

Bio-contaminants	350 cfm	400 cfm	450 cfm	500 cfm
Burkholderia cenocepacia	70.1625%	65.2930%	60.9626%	57.1123%
Adenovirus	69.6473%	64.7692%	60.4393%	56.5952%
Enterobacter cloacae	66.7116%	61.8050%	57.4940%	53.6974%
Reovirus	64.1773%	59.2724%	54.9978%	51.2572%
Norwalk virus	60.5198%	55.6563%	51.4630%	47.8246%
Echovirus	48.8043%	44.3354%	40.5915%	37.4160%
Bacillus Anthacis	39.9830%	36.0280%	32.7726%	30.0493%
Cryptococcus neoformans	39.9830%	36.0280%	32.7726%	30.0493%
Blastomyces dermatidis	39.5226%	35.5988%	32.3718%	29.6741%
Histoplasma capsulatum	39.5226%	35.5988%	32.3718%	29.6741%
Mucor spores	39.5226%	35.5988%	32.3718%	29.6741%
Bacillus subtilis spores	37.7404%	33.9412%	30.8267%	28.2297%
Francisella Tularensis	36.2769%	32.5845%	29.5653%	27.0529%
Fusarium oxysporum	35.2162%	31.6036%	28.6551%	26.2051%
Botrytis cinerea	24.5166%	21.8156%	19.6482%	17.8711%
Rhizopus nigricans	23.1427%	20.5719%	18.5130%	16.8275%
Nocardia asteroides	22.2209%	19.7389%	17.7538%	16.1305%
Penicillium digitatum	19.7082%	17.4747%	15.6946%	14.2430%
Bacillus Cereus spores	15.8377%	14.0041%	12.5503%	11.3697%
Algae blue-green	14.4890%	12.7995%	11.4623%	10.3779%
Streptocuccus Pneumoniae	13.9646%	12.3317%	11.0403%	9.9935%
Penicillium chrysogenum	12.4255%	10.9609%	9.8049%	8.8694%
Trichophyton rubrum	11.8075%	10.4114%	9.3103%	8.4197%
Candida albicans	11.6996%	10.3155%	9.2240%	8.3413%
Mucor mucedo	11.4834%	10.1234%	9.0512%	8.1842%
Clostridium Difficile spores	11.0929%	9.7765%	8.7392%	7.9008%
Cladosporium herbarum	10.6951%	9.4235%	8.4219%	7.6126%
Scopulariopsis brevicaulis	9.9825%	8.7913%	7.8540%	7.0972%
Bacillus Anthacis spores	9.0419%	7.9580%	7.1060%	6.4187%
Aspergillus fumigatus spores	3.0998%	2.7176%	2.4194%	2.1801%
Aspergillus niger spores	2.1173%	1.8551%	1.6507%	1.4868%
Cladosporium wemecki	1.5471%	1.3550%	1.2053%	1.0855%
stachybotrys chartarum	1.2456%	1.0908%	0.9702%	0.8736%
Myxobolus cerebralis	0.7007%	0.6134%	0.5454%	0.4910%
Moraxella	0.6703%	0.5868%	0.5217%	0.4697%

Les pourcentages dans cette table représentent le taux minimum anticipé de neutralisation simple-passe, pour l'irradiation par UV-C seulement. L'impact additionnel de la filtration de l'air n'est pas considéré ici.

Cédule de maintenance


Remplacement du filtre: tous les 3 à 6 mois, dépendamment de la qualité de filtration du système de ventilation et de la fréquence de nettoyage des conduits.


Remplacement de la lampe UV: tous les 2 ans ou 17,000 heures.

Comment spécifier OTO-UV

Fourniture et montage du diffuseur UV à jet hélicoïdal OTO-UV, avec fentes incurvées estampées à motif radial, dimension 24x24 pouces pour plafonds suspendus. Face articulée et amovible conçue à partir d'un panneau en acier galvanisé, avec fini de peinture en poudre électrostatique blanche M9016. Plénum construit en aluminium, intégrant une lampe UV-C en quartz à zéro émission d'ozone, avec un mécanisme de blocage de la lumière UV-C protégeant les occupants de la pièce et une sécurité par interrupteurs de verrouillage plaçant le système hors tension en l'absence de barrière UV ou lorsque la face est ouverte. Doit être fourni et installé avec l'adaptateur de conduit conique en aluminium correspondant aux diffuseurs UV. Le plenum doit avoir des attaches antisismiques pour fixer le produit à la structure du bâtiment. Le diffuseur doit être certifié UL pour la sécurité du système électrique et des émissions UV. La performance simple-passe doit avoir été démontrée en laboratoire par des tests indépendants avec le vrai virus SARS-CoV-2, avec triple redondance et deux points de contrôle et démontrant une efficacité de 99.949% pour 458 cfm. Par EffectiV HVAC Inc.

Comment commander les diffuseurs UV

DIFFUSEURS UV
DiffuseursUV.com