

ARCHITECTURE - COMFORT - EFFICIENCY - IAQ

PRODUCT CATALOG

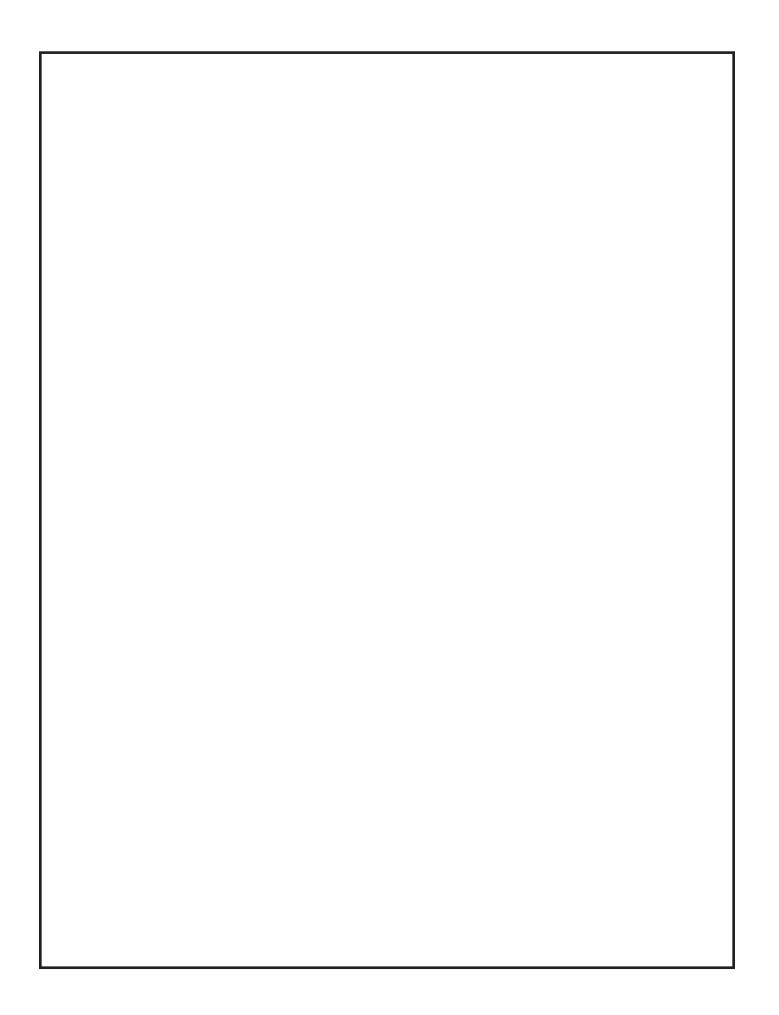
AIR PURIFICATION

JANUARY 7, 2024

ARCHITECTURE - COMFORT - EFFICIENCY - IAQ

Our **ACEI** philosophy (ARCHITECTURE - COMFORT - EFFICIENCY - IAQ) stands behind each product that we offer and every decision that we make.

We thrive on providing innovative air distribution solutions to numerous architectural needs, thermal comfort problems and energy efficiency requirements, and to help push the boundaries of indoor air quality.


EffectiV HVAC high performance architectural diffusers provide very effective solutions to engineering and design challenges.

EffectiV HVAC Inc.

178 Benjamin-Hudon, Saint-Laurent (Montreal), Qc, Canada, H4N 1H8 Phone: 514-375-3885 Toll Free: 1-844-375-3885 Email: info@effectiv-hvac.com Website: effectiv-hvac.com

Table Of Contents	
Warranty	:
Finish Chart	8
Air Purification	•
AXO-HEPA High Induction Swirl Diffusers with HEPA Filter AXO-UV High Induction Swirl UV Diffusers OTO-UV Architectural Swirl UV Diffuser PLAY-UV Adjustable UV Diffuser UV Phantom Room Air Purification System	1 1 2 5 7
Submittal Drawings	8

By Model #			
AXO-HEPA Metric Submittal	94		
AXO-HEPA Performance Data	13		
AXO-HEPA Submittal	93		
AXO-PHANTOM Performance Data	79		
AXO-S300-UV Performance Data	25		
AXO-S400-UV Performance Data	27		
AXO-S-UV Performance Data	30		
AXO-SX-UV Performance Data	33		
AXO-UV Submittal	91		
AXO-UV Submittal	95		
OTO-UV Performance Data	49		
OTO-UV Submittal	98		
PLAY-PHANTOM Performance Data	81		
PLAY-UV Performance Data	64		
PLAY-UV Submittal	100		

WARRANTY

EffectiV HVAC Inc. guarantees its products against manufacturing defects for a period of two (2) years, from the date of delivery of the goods to the Customer.

The warranty shall only cover the replacement of defective products. It does not include workmanship, trips, replacement of other damaged products, or any other disbursements, charges or damages, and under no circumstance claims for profit or revenue loss that the Customer or third parties may have suffered. The warranty will not be effective in following circumstances:

- When the product has been incorporated to other products or building by the Customer or third parties, without observing the technical recommendations and installation methods recommenced by EffectiV;

- When the selection of products was inaccurate or the installation faulty;

- When the product has been manipulated or used for different purposes than those for which it was originally conceived;

- When the products have been damaged due to handling and other manipulations;

- When the products have been damaged due to shipping, unless the shipping was provided and paid for by EffectiV;

- When the products have been damaged due to manipulations or repairs subsequent to their first installation;

Glossiness

RAL xxxx BShiny 85-95% glossRAL xxxx SSatin finish, 60-70% glossRAL xxxx MMatte finish, 20-30% gloss

		27		_	1
			RAL 7000	RAL 7001	RAL 7002
			Squirrel grey	Silver grey	Olive grey
RAL 7003 Moss grey	RAL 7004 Signal grey	RAL 7005 Mouse grey	RAL 7006 Beige grey	RAL 7008 Khaki grey	RAL 7009 Green grey
RAL 7010 Tarpaulin grey	RAL 7011 Iron grey	RAL 7012 Basalt grey	RAL 7013 Brown grey	RAL 7015 Slate grey	RAL 7016 Anthracite grey
RAL 7021 Black grey	RAL 7022 Umbra grey	RAL 7023 Concrete grey	RAL 7024 Graphite grey	RAL 7026 Granite grey	RAL 7030 Stone grey
RAL 7031 Blue grey	RAL 7032 Pebble grey	RAL 7033 Cement grey	RAL 7034 Yellow grey	RAL 7035 Light grey	RAL 7036 Platinum grey
RAL 7037 Dusty grey	RAL 7038 Agate grey	RAL 7039 Quartz grey	RAL 7040 Window grey	RAL 7042 Traffic grey A	RAL 7043 Traffic grey B
RAL 7044 Silk grey	RAL 7045 Telegrey 1	RAL 7046 Telegrey 2	RAL 7047 Telegrey 4		1
	RAL 9001 Cream	RAL 9002 Grey white	RAL 9003 Signal white	RAL 9004 Signal black	RAL 9005 Jet black
RAL 9006 White aluminium	RAL 9007 Grey aluminium	RAL 9010 Pure white	RAL 9011 Graphite black	RAL 9016 Traffic white	RAL 9017 Traffic black

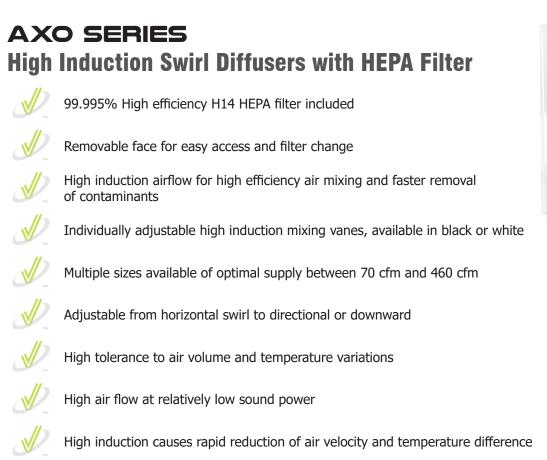
The finishes below are also considered part of this standard finish chart: 9010B, 9010M, 9016B, 9016M, 9003B, 9003M, 9005M and 9006M

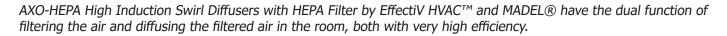
RAL 9018 Papyrus white

EFFECT

Other RAL finishes available upon request, please ask for a quote

AIR PURIFICATION


HEPA


AXO-HEPA High Induction Swirl Diffusers with HEPA Filter

Aug 24 2022

AIR PURIFICATION

It consists of a plenum box made from polystyrene with a circular intake on the side, equipped with a removable high induction swirl diffuser face for high turbulence airflow.

AXO-HEPA diffusers are equipped with a pressure intake that controls pressure loss in the filter. AXO-HEPA units are suitable for installations that require very pure, germ-free air such as clean rooms and pharmaceutical laboratories.

H14 filters for terminal units are provided with an extruded aluminum frame finished with epoxy paint, and both sides are provided with a protective aluminum grille. The mini pleated filter pack made of micro fiberglass maintains the proper shape via spacers by continuous hot fusion.

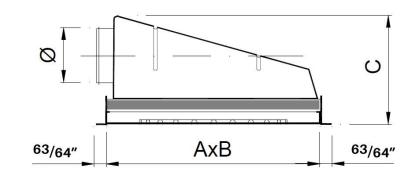
The design of the filter assembly with micro fiberglass ensures minimal pressure drop and laminar flow.

The structure is sealed with elastomer polyurethane to eliminate the risk of air bypass.

Each filter is tested and labelled according to EN 1822. The test report is delivered with each product.

The individually adjustable vanes support multiple angles to adapt the airflow to virtually any environment. The design of the induction vanes and radial arrangement supplies the air in a swirl pattern while leveraging the Coanda effect.

The resulting high induction airflow mixes the room air more efficiently than other diffusers. The benefits of high induction are reduced stratification and more even temperature in the room, improved thermal comfort, increase in energy efficiency, and efficient removal of contaminants in the room.


The AXO series diffusers admit a flow variation of 60% while keeping the air stream stable. For optimal conditions, AXO-HEPA diffusers may be used in ceilings 8.5 up to 13 feet (2.6 up to 4 meters) high, with a temperature differential up to 22°F (12°C).

AXO-HEPA 538

Quick Selection

Model	A x B	С	Neck	Min cfm	Max cfm	Nominal cfm	Pressure Drop (in.w.g.)
AXO-HEPA 330	12 ⁶³ /64″	13 37/64"	6 ³ /4″	71	106	88	0.602
AXO-HEPA 482	18 ³¹ /32″	13 37/64"	6 ³ /4″	188	282	235	0.602
AXO-HEPA 538	21 ³ /16"	14 ³ /8″	7 3/4″	235	353	294	0.602
AXO-HEPA 635	25″	14 3/8″	7 3/4″	306	459	382	0.602

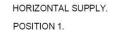
Note: Min cfm and Max cfm are recommended values for optimal performance and can be exceeded in VAV applications.

HEPA FILTER

Model #	RH14
Effectiveness MPPS	99.995%
Classification EN 1822:2009	H14
Final Pressure Drop	1.606 in.w.g.
Maximum Pressure Drop	25″
Maximum Relative Humidity	90%

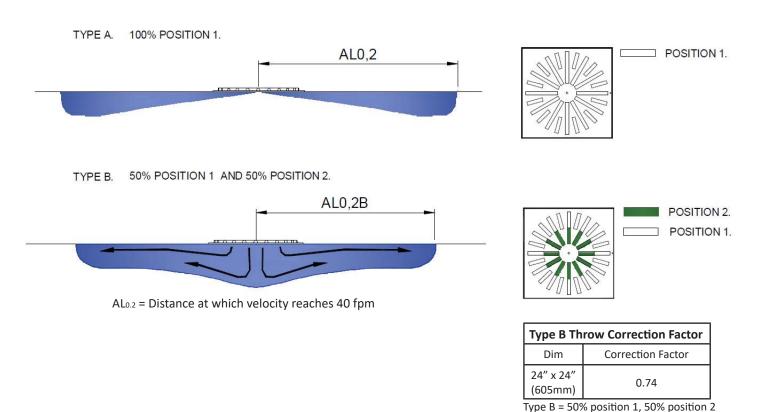
FINISH

Choice of anodized aluminum or galvanized steel powder coated in white RAL9010, with either black or white induction vanes.

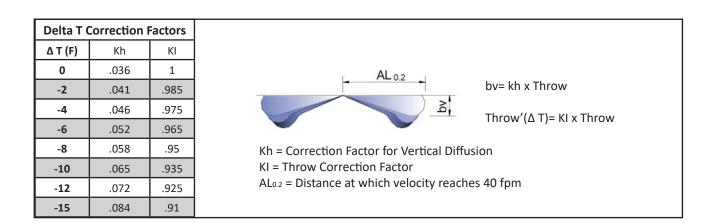


Plenum

White polystyrene plenum box with circular side duct connection, and a pressure intake to control filter pressure loss.


AXO Vanes Positioning

EFFECT


AXO-HEPA Performance Data

Model	Neck (fpm) Velocity	200	300	400	500	600	700	800	900	1000
	CFM	53	80	107	134	160	187	214	241	267
	Pressure Loss (in.w.g.)		0.562	0.703	0.783					
330	NC	< 15	22	30	35					
	Throw (ft) - Coanda Effect	2-3-4	3-4-7	4-6-9	5-7-11					
	Throw (ft) - No Ceiling Effect	1-2-3	2-3-5	3-4-7	3-6-9					
	CFM	53	80	107	134	160	187	214	241	267
	Pressure Loss (in.w.g.)	0.221	0.289	0.357	0.426	0.466	0.51	0.562	0.602	0.643
482	NC	< 15	< 15	< 15	16	20	24	27	30	33
	Throw (ft) - Coanda Effect	1-2-3	2-3-4	2-4-6	3-5-7	4-6-9	4-7-10	5-8-12	5-9-13	6-10-15
	Throw (ft) - No Ceiling Effect	1-1-2	1-2-3	2-3-4	2-4-6	3-4-7	3-5-8	4-6-9	4-7-10	4-7-11
	CFM	70	105	140	175	209	244	279	314	349
	Pressure Loss (in.w.g.)	0.229	0.301	0.361	0.426	0.49	0.522	0.566	0.614	0.663
538	NC	< 15	< 15	< 15	18	23	27	30	34	36
	Throw (ft) - Coanda Effect	1-2-3	2-3-5	2-4-6	3-5-8	4-6-9	4-7-11	5-8-12	6-9-14	6-10-16
	Throw (ft) - No Ceiling Effect	1-2-2	1-2-4	2-3-5	2-4-6	3-5-7	3-5-8	4-6-9	4-7-11	5-8-12
	CFM	70	105	140	175	209	244	279	314	349
	Pressure Loss (in.w.g.)	0.193	0.261	0.313	0.361	0.418	0.454	0.49	0.522	0.562
635	NC	< 15	< 15	< 15	< 15	16	19	22	25	27
	Throw (ft) - Coanda Effect		2-3-4	2-3-5	3-4-7	3-5-8	4-6-9	4-7-11	5-8-12	5-9-13
	Throw (ft) - No Ceiling Effect		1-2-3	2-3-4	2-3-5	2-4-6	3-5-7	3-5-8	4-6-9	4-7-10

Performance Notes

- NC Value based on 10 db room attenuation.

- Throw Values are based on isothermal air and terminal velocities of 100 fpm, 60 fpm and 40 fpm respectively.

	Induction Ratio									
Throw (ft)	i 330	i 482	i 538 (A)	i 538 (B)	i 635 (A)	i 635 (B)				
4	10	7	6	9	7	7				
6	17	13	12	17	9	14				
8	23	18	16	24	11	19				
10	29	24	20	30	16	25				
15	48	39	33	50	26	42				
20	65	55	46	73	37	60				
25	100	72	58	97	47	80				

induced room air = supplied cfm * i

induced room air = cfm mixed for given throw

		Delta T Rati	0	
Throw (ft)	330	482	538	635
4	0.046	0.052	0.082	0.115
6	0.028	0.034	0.047	0.068
8	0.022	0.026	0.035	0.052
10	0.017	0.019	0.028	0.04
15	-	-	0.018	0.027
20	-	-	0.01	0.02
25	-	-	-	0.016

How to Specify AXO-HEPA

Supply and mounting of high induction swirl diffuser model AXO with individually adjustable radial vanes. Removable face panel made in anodized aluminum or galvanized steel powder coated in white M9010, integrated in a white polystyrene plenum box with circular side duct connection. Shall include a HEPA filter H14 with a pressure intake to control filter pressure. ABS adjustable diffusion vanes shall have airflow straighteners on the back of the vanes. By EffectiV HVAC / MADEL.

How to Order AXO-HEPA Series

АХО-НЕРА -АВ	538	/AA		
		Finish	AA	Adnodized Aluminum
			M9010	Powder Coated RAL 9016
	Dim	ension	330	71 - 106 cfm
			482	188 - 282 cfm
			538	235 - 353 cfm
			635	306 - 459 cfm
Induct	tion Va	nes Color	AB	White Induction Vanes
			AN	Black Induction Vanes

AXO-UV High Induction Swirl UV Diffusers

AXO-UV SERIES High Induction Swirl UV Diffusers

UV Diffusers help contain the spread of viruses and bacteria through ventilation systems

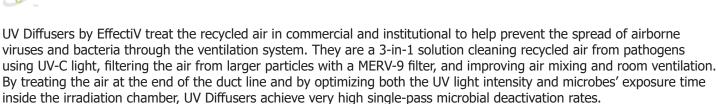
3-in-1 solution combining UV-C irradiation, air filtration and improved air mixing and room ventilation

Single-pass deactivation of airborne viruses and bacteria

Tested with the real SARS-CoV-2 virus in a 3rd party laboratory, achieving a 99.949% single-pass virus deactivation at 458 cfm

Hinged face provide easy access for filter change and maintenance

Four models to supply air volumes between 50 cfm and 550 cfm


Suitable for new buildings and existing buildings

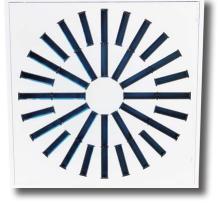
High discharge velocity provide efficient mixing of supplied air with room air

High induction improves thermal comfort and energy efficiency

Available in steel and aluminum construction

Built-in earthquake tabs

They are a practical solution which can be installed in most existing buildings without other significant upgrades, and offer easy access for maintenance and filter replacement. They are also an energy efficient solution to treat the air.


AXO-UV high induction swirl diffusers are designed to be used in air conditioning, ventilation and heating systems at a temperature differential up to 22°F (12°C) and a maximum temperature of 110°F (43°C). They can be mounted in false ceilings, on drywall, or suspended from the ceiling, from 8.5 feet to 13 feet (2.6 up to 4 meters) high. AXO diffusers allow a flow variation of 60% while keeping the air stream stable.

AXO High Induction Diffusers are available in four models covering different ranges of air volumes between 50 cfm and 550 cfm. They also deliver the highest induction ratio, mixing the air more efficiently than any other diffuser in a 360-degree diffusion pattern. AXO diffusers offer a very reliable performance in VAV applications in both heating and cooling.

AXO can also be adjusted to send the air in specific directions or downwards.

AXO-UV diffusers are the only UV diffusers available in both steel and aluminum.

AXO-UV

Applications

PREVENTING THE SPREAD OF VIRUSES AND BACTERIA THROUGH VENTILATION SYSTEMS IN COMMERCIAL BUILDINGS

Some airborne virus particles are too small to be entirely caught by standard filters. Also, the greater the filter efficiency is, the more pressure is added to the HVAC system. Most ventilation systems in commercial and institutional buildings recycle and recirculate a large percentage of the air without proper treatment and filtration. This is done in order to save energy, but quite problematic when dealing with airborne diseases. Microbes can easily spread between rooms via the ventilation system.

UV Diffusers are a high efficiency single-pass solution to treat recycled air. Diffusers are the last thing that the air passes through before entering the room, making any possible re-contamination of the air impossible. Once UV Diffusers are installed in a space, they act as a shield against pathogens and contaminants, protecting that room from the rest of the building.

UV Diffusers can replace existing diffusers in the whole building, or be installed in a single space. Easy access to ceiling diffusers gives building owners and occupants a lot of flexibility in implementing this solution.

The use of this device is a supplement to and not a substitute for standard infection control practices; users must continue to follow all current infection control practices, including those related to the cleaning and disinfection of environmental surfaces.

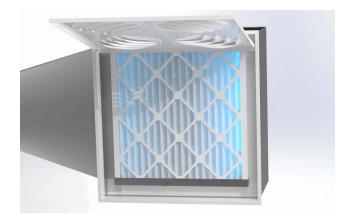
AXO-UV Model Selection

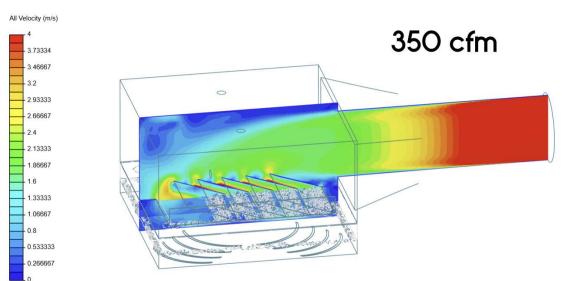
AXO-S300-UV 50 - 150 cfm

AXO-S400-UV 100 - 250 cfm

AXO-S-UV 150 - 450 cfm

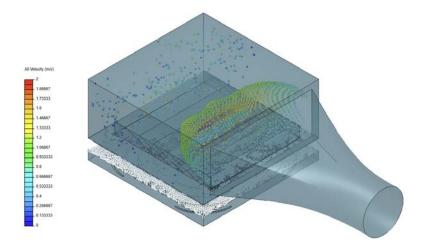
AXO-SX-UV 200 - 500 cfm


HIGH PERFORMANCE ARCHITECTURAL DIFFUSERS


How UV Diffusers Work

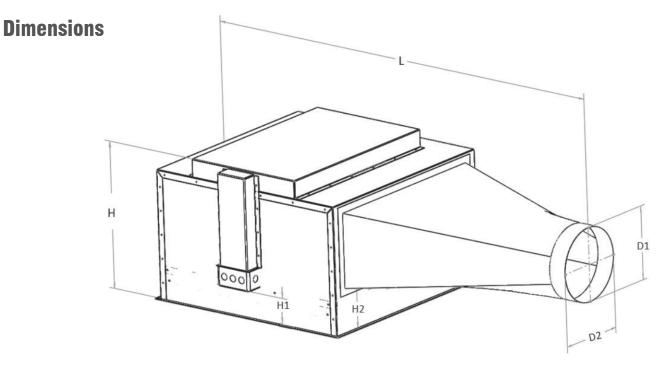
1. Air Filtration

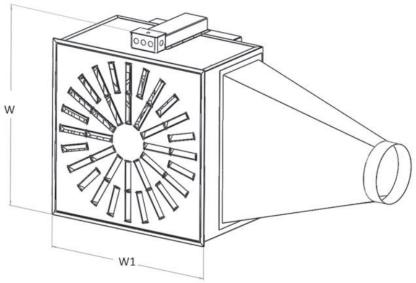
UV Diffusers integrate a UV-resistant MERV-9 or MERV-7 filter to catch larger particles including dust, spores and mites, removing allergens and other irritants, and improving air quality.


The filter also helps to pressurize the air inside the plenum and slow it down significantly.

2. UV-C Germicidal Irradiation

UV Diffusers also integrate a UV-C lamp to irradiate viruses and bacteria. The air velocity being significantly lower in the diffuser than it is in the duct, pathogens exposure to UV-C light and therefore disinfection efficiency are multiplied by a factor of 2 to 8 times.


The placement of the UV lamp, the airflow trajectory, the shape and dimension of the plenum and collar for light reflection and the materials - everything has been thought out in order to improve air disinfection efficiency.



3. Improved Ventilation

AXO-UV high induction swirl UV diffusers supply the air with a high discharge velocity and feature a very high induction ratio, mixing the air more efficiently than any other diffuser in a 360-degree diffusion pattern. AXO diffusers also offer reliable performance in VAV applications. The result is an improved room ventilation and faster removal of contaminants. Another benefit is a significant improvement of occupants' thermal comfort. Better air mixing can also help optimizing the performance of the HVAC system and reduce energy consumption.

Dimensions					
W	25 ²/3″				
W1	23 7/8″				
Н	15 7/8″				
H1	3 9/16″				
H2	4 3/4″				
L	47 1/2″				

Duct Diameter	D1	D2
6″	5 ⁷ /8″	5 ⁷ /8″
7″	6 7/8″	6 7/8″
8″	7 7/8″	7 7/8″
10″	11″	8″
12″	16″	8″

Safety

UV Diffusers certified UL in USA and Canada for safety in regards to electrical and UV irradiation hazards. UV-C light is contained within the diffuser in order to ensure room occupants' safety.

Interlock switches are also in place to ensure maintenance personnel's safety.

High quality lamps made of quartz do not emit any ozone nor other harmful particles. UV Diffusers are certified Zero Ozone Emission by UL

UV Diffusers are also certified by the California Air Resources Board

Mechanical Specifications

Maximum Product Weight	34 lbs
Hinged Face	Yes
Removable Face	Yes
Filter Replacement Through Face	Yes
UV Lamp Replacement Through Face	Yes

Electrical Specifications

Diffuser Voltage	120 V / 240 V
UV Diffuser Wattage	40 W
Safety Switch - Opened Face	Yes
Safety Switch - No UVC Barrier	Yes

UV Specifications

UV Output 253.7nm - 100hr (per lamp)	12.0 W
Intensity @ 1m (per lamp)	90 µW/cm2
UVA	No
UVB	No
UVC	Yes
Ozone emission	No
Lamp Life Expectancy	17,000 hours
Lamp Diameter	T6 (19 mm)
Lamp Geometry	`J' Shape
Lamp Type	Quartz

Filter Options for UV Diffusers

UVFILTER-W-M9 UV-Resistant 20" x 20" x 2" White MERV-9 Pleated Filter

UVFILTER-W-M9							
Minimum Efficiency Rating Value (AHRAE 52.2)	MERV 9 @ 1968 cfm						
Initial Resistance @ 492 cfm	0.021 in.w.g						
UL Certification	Yes						

EFFEC

UV-Resistant 20" x 20" x 2" MERV-7 Carbon Pleated Filter	UVFILTER-C-M7	UV-Resistant 20" x 20" x 2" MERV-7 Carbon Pleated Filter
--	---------------	--

UVFILTER-C-M7								
Minimum Efficiency Rating Value (AHRAE 52.2)	MERV 7 @ 1968 cfm							
Initial Resistance @ 492 cfm	0.08 in.w.g							
UL Certification	Yes							

AXO-S300-UV Airflow Performance Data

Free Area	CFM	CFM
(sqf)	Min	Max
0.10	50	150

AXO-S300-UV

Neck Size	Neck (fpm) Velocity	200	300	400	500	600	700
(inches)	Velocity Pressure (H2O)	0.002	0.006	0.010	0.016	0.022	0.031
	CFM	39	59	79	98	118	137
	Pressure Loss (in.w.g.) - White Filter	0.02	0.04	0.06	0.1	0.14	0.18
6	Pressure Loss (in.w.g.) - Carbon Filter	0.02	0.04	0.06	0.1	0.14	0.18
6	NC	< 15	< 15	21	26	31	35
	Throw (ft) - Coanda Effect	1-2-3	2-3-5	3-4-7	3-6-8	4-7-10	5-8-11
	Throw (ft) - No Ceiling Effect	1-2-3	2-3-4	2-3-5	3-4-6	3-5-8	4-6-9
	CFM	70	105	140			
	Pressure Loss (in.w.g.) - White Filter	0.02	0.04	0.06	0.1	0.14	0.18
	Pressure Loss (in.w.g.) - Carbon Filter	0.02	0.04	0.06	0.1	0.14	0.18
8	NC	17	28	37			
	Throw (ft) - Coanda Effect	2-4-6	4-6-9	5-8-11			
	Throw (ft) - No Ceiling Effect	2-3-4	3-4-7	3-6-9			

Performance Notes

- NC Value based on 10 db room attenuation.

- Throw Values are based on isothermal air and terminal velocities of 100 fpm, 60 fpm and 40 fpm, respectively.

- Pressure Loss values represent the total pressure drop of the diffuser, plenum and filter assembled together.

Throw Correction Factors - Temperature - AXO-S300-UV

ΔΤ(F)	Kh	KI		
0	.036	1	AL 0.2	
-2	.041	.985		bv= kh x Throw
-4	.046	.975	à.	
-6	.052	.965		Throw'(Δ T)= KI x Throw
-8	.058	.95	Kh = Correction Factor for Vertical Diffusion	
-10	.065	.935	KI = Throw Correction Factor	
-12	.072	.925	AL _{0.2} = Distance at which velocity reaches 40) fpm
-15	.084	.91		

Throw Correction Factors - Airflow Adjustments - AXO-S300-UV

Adjustment	Ка					
1-Way	1.4	Throw' = Ka x Throw				
2-Way	1.2					
3-Way	1.1					

Induction Ratio and Delta T Ratio - AXO-S300-UV

	Ratios						
Throw (ft)	i	Delta T Ratio	induced room air = supplied cfm * i				
4	10	0.046	induced room air = cfm mixed for given throw				
6	17	0.028					
8	23	0.022	Delta T (Throw) = Delta T (Supply) * Delta T Ratio				
10	29	0.017	Polta T (Supply) = T (Poom) T (Supply)				
15	48	-	Delta T (Supply) = T (Room) - T (Supply) Delta T (Throw) = T (Room) - T (Throw)				
20	65	-					

AXO-S400-UV Airflow Performance Data

Free Area	CFM	CFM	
(sqf)	Min	Max	
0.22	100	250	

AXO-S400-UV

Neck Size (inches)	Neck (fpm) Velocity	200	300	400	500	600	700	800	1000
	Velocity Pressure (H2O)	0.002	0.006	0.01	0.016	0.022	0.031	0.041	.062
	CFM		59	79	98	118	137	157	196
	Pressure Loss (in.w.g.) - White Filter		0.013	0.022	0.032	0.045	0.059	0.077	0.117
6	Pressure Loss (in.w.g.) - Carbon Filter		0.019	0.029	0.041	0.055	0.071	0.09	0.133
6	NC		< 15	< 15	< 15	< 15	17	21	26
	Throw (ft) - Coanda Effect		1-2-3	2-3-4	2-4-5	3-4-7	3-5-8	4-6-9	4-7-11
	Throw (ft) - No Ceiling Effect		1-2-2	1-2-3	2-3-4	2-3-5	2-4-6	3-4-7	3-5-8
	CFM	70	105	140	175	209	244	279	349
	Pressure Loss (in.w.g.) - White Filter	0.018	0.036	0.062	0.094	0.132	0.178	0.231	0.358
8	Pressure Loss (in.w.g.) - Carbon Filter	0.024	0.045	0.073	0.108	0.149	0.198	0.253	0.384
0	NC	< 15	< 15	16	22	25	29	32	> 40
	Throw (ft) - Coanda Effect	2-3-4	2-4-6	3-5-8	4-7-10	5-8-12	5-9-14	6-10-16	8-13-19
	Throw (ft) - No Ceiling Effect	1-2-3	2-3-4	2-4-6	3-5-7	3-6-9	4-7-10	5-8-12	6-10-15
	CFM	109	164	218	273	327			
	Pressure Loss (in.w.g.) - White Filter	0.039	0.083	0.143	0.222	0.315			
10	Pressure Loss (in.w.g.) - Carbon Filter	0.048	0.097	0.161	0.243	0.34			
10	NC	< 15	22	28	34	> 40			
	Throw (ft) - Coanda Effect	2-4-6	4-6-9	5-8-12	6-10-15	7-12-18			
	Throw (ft) - No Ceiling Effect	2-3-5	3-5-7	4-6-9	5-8-11	5-9-14			

Performance Notes

- NC Value based on 10 db room attenuation.

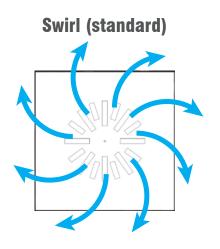
- Throw Values are based on isothermal air and terminal velocities of 100 fpm, 60 fpm and 40 fpm, respectively.

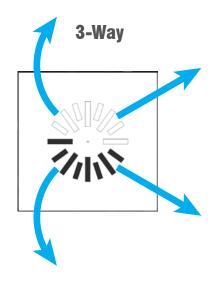
- Pressure Loss values represent the total pressure drop of the diffuser, plenum and filter assembled together.

Throw Correction Factors - Temperature - AXO-S400-UV

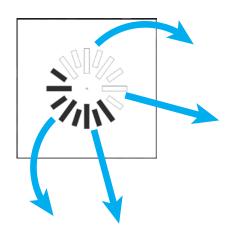
Delta T C	Correction	Factors
Δ T (F)	Kh	KI
0	.036	1
-2	.041	.985
-4	.046	.975
-6	.052	.965
-8	.058	.95
-10	.065	.935
-12	.072	.925
-15	.084	.91

Throw Correction Factors - Airflow Adjustments - AXO-S400-UV

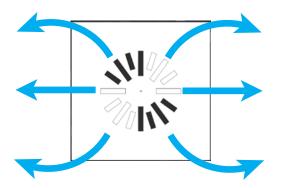

Adjustment	Ка	
1-Way	1.4	Throw' = Ka x Throw
2-Way	1.2	
3-Way	1.1	


Induction Ratio and Delta T Ratio - AXO-S400-UV

	Ratios	
Throw (ft)	i	Delta T Ratio
4	7	0.052
6	13	0.034
8	18	0.026
10	24	0.019
15	39	-
20	55	-
25	72	-
30	90	-



AXO-S400-UV Adjustment and Patterns



2-Way Corner

2-Way Opposed

AXO-S-UV Airflow Performance Data

F	ree Area	CFM	CFM	
	(sqf)	Min	Max	
	0.48	150	450	

AXO-S-UV

Neck	Neck (fpm) Velocity	300	400	500	600	700	800	1000	1200	1400
Size (inches)	Velocity Pressure (H2O)	0.006	.010	.016	.022	.031	.041	.062	.090	.122
	CFM			98	118	137	157	196	236	275
	Pressure Loss (in.w.g.) - White Filter			0.01	0.014	0.018	0.023	0.035	0.05	0.067
6	Pressure Loss (in.w.g.) - Carbon Filter			0.018	0.024	0.029	0.036	0.051	0.069	0.089
	NC			< 15	< 15	< 15	< 15	15	19	22
	Throw (ft) - Coanda Effect			1-2-4	2-3-4	2-3-5	2-4-6	3-5-7	4-6-9	4-7-10
	Throw (ft) - No Ceiling Effect			1-2-3	1-2-3	2-3-4	2-3-4	2-4-6	3-4-7	3-5-8
	CFM	105	140	175	209	244	279	349	419	489
	Pressure Loss (in.w.g.) - White Filter		0.019	0.028	0.04	0.053	0.069	0.107	0.154	0.208
8	Pressure Loss (in.w.g.) - Carbon Filter	0.02	0.03	0.043	0.056	0.073	0.091	0.134	0.185	0.244
o l	NC	< 15	< 15	< 15	16	20	22	27	31	35
	Throw (ft) - Coanda Effect	2-3-4	2-3-5	3-4-7	3-5-8	4-6-9	4-7-10	5-9-13	6-10-16	7-12-18
	Throw (ft) - No Ceiling Effect	1-2-3	2-3-4	2-3-5	2-4-6	3-5-7	3-5-8	4-7-10	5-8-12	6-9-14
	CFM	164	218	273	327	382	436	545	654	
	Pressure Loss (in.w.g.) - White Filter	0.025	0.043	0.066	0.094	0.128	0.166	0.258	0.37	0.503
10	Pressure Loss (in.w.g.) - Carbon Filter	0.038	0.06	0.088	0.12	0.157	0.198	0.297	0.415	0.554
	NC	< 15	17	22	26	28	32	37	40	
	Throw (ft) - Coanda Effect	3-4-6	3-5-8	4-7-10	5-8-12	6-10-14	7-11-16	8-14-21	10-16-25	
	Throw (ft) - No Ceiling Effect	2-3-5	2-4-6	3-5-8	4-6-9	4-7-11	5-8-12	6-10-15	7-12-19	
	CFM	236	314	393	471	550	628			
	Pressure Loss (in.w.g.) - White Filter	0.05	0.087	0.135	0.193	0.263	0.341			
12	Pressure Loss (in.w.g.) - Carbon Filter	0.069	0.111	0.165	0.228	0.302	0.385			
	NC	19	25	30	34	37	40			
	Throw (ft) - Coanda Effect	4-6-9	5-8-12	6-10-15	7-12-18	8-14-21	9-15-23			
	Throw (ft) - No Ceiling Effect	3-5-7	4-6-9	4-7-11	5-9-13	6-10-16	7-11-17			

Performance Notes

- NC Value based on 10 db room attenuation.

- Throw Values are based on isothermal air and terminal velocities of **<u>100 fpm, 60 fpm and 40 fpm</u>**, respectively.

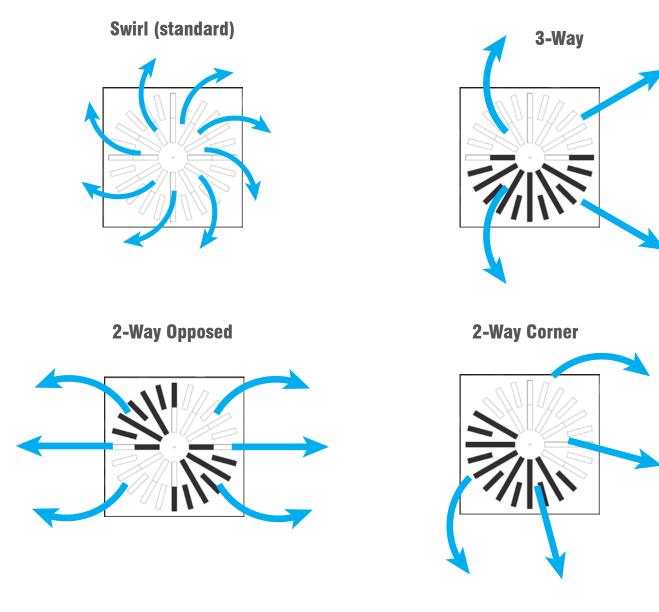
- Pressure Loss values represent the total pressure drop of the diffuser, plenum and filter assembled together.

30

Throw Correction Factors - Temperature - AXO-S-UV

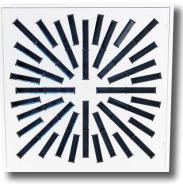
Delta T Co	orrection	Factors
Δ T (F)	Kh	KI
0	.036	1
-2	.041	.985
-4	.046	.975
-6	.052	.965
-8	.058	.95
-10	.065	.935
-12	.072	.925
-15	.084	.91

Throw Correction Factors - Airflow Adjustments - AXO-S-UV


Adjustment	Ка
1-Way	1.4
2-Way	1.2
3-Way	1.1

Induction Ratio and Delta T Ratio - AXO-S-UV

	Ratios		
Throw (ft)	i	Delta T Ratio	induced room air = supplied cfm * i
4	7	0.115	induced room air = cfm mixed for given throw
6	9	0.068	
8	11	0.052	
10	16	0.04	Delta T (Throw) = Delta T (Supply) * Delta T Ratio
15	26	0.027	
20	37	0.02	Delta T (Supply) = T (Room) - T (Supply)
25	47	0.016	Delta T (Throw) = T (Room) - T (Throw)
30	61	-	


AXO-S-UV Adjustment and Patterns

AXO-SX-UV Airflow Performance Data

Free Area	CFM	CFM	
(sqf)	Min	Max	
0.62	200		

AXO-SX-UV

Neck Size	Neck (fpm) Velocity	400	500	600	700	800	1000	1200	1400	1600
(inches)	Velocity Pressure (H2O)	.010	.016	.022	.031	.041	.062	0.09	0.122	0.16
	CFM			118	137	157	196	236	275	314
	Pressure Loss (in.w.g.) - White Filter			0.012	0.016	0.02	0.031	0.044	0.06	0.078
6	Pressure Loss (in.w.g.) - Carbon Filter			0.022	0.027	0.033	0.047	0.063	0.081	0.102
0	NC			< 15	< 15	< 15	< 15	< 15	16	20
	Throw (ft) - Coanda Effect			2-3-4	2-3-4	2-3-4	2-4-5	3-4-7	3-5-8	4-6-9
	Throw (ft) - No Ceiling Effect			1-2-3	1-2-3	1-2-3	2-3-4	2-3-5	2-4-6	3-4-7
	CFM	140	175	209	244	279	349	419	489	559
	Pressure Loss (in.w.g.) - White Filter	0.016	0.025	0.035	0.047	0.062	0.096	0.138	0.187	0.245
8	Pressure Loss (in.w.g.) - Carbon Filter	0.028	0.039	0.052	0.067	0.083	0.122	0.169	0.223	0.284
°	NC	< 15	< 15	< 15	< 15	17	23	28	32	36
	Throw (ft) - Coanda Effect	2-3-4	2-3-5	2-4-6	3-4-7	3-5-8	4-6-10	5-8-12	5-9-14	6-10-16
	Throw (ft) - No Ceiling Effect	1-2-3	1-2-4	2-3-4	2-3-5	2-4-6	3-5-7	4-6-9	4-7-10	5-8-12
	CFM	218	273	327	382	436	545	654		
	Pressure Loss (in.w.g.) - White Filter	0.038	0.059	0.084	0.115	0.149	0.232	0.334		
10	Pressure Loss (in.w.g.) - Carbon Filter	0.055	0.08	0.109	0.143	0.181	0.271	0.379		
10	NC	< 15	16	21	25	29	36	41		
	Throw (ft) - Coanda Effect	2-4-6	3-5-8	4-6-9	4-7-11	5-8-12	6-10-15	7-12-18		
	Throw (ft) - No Ceiling Effect	2-3-5	2-4-6	3-5-7	3-5-8	4-6-9	5-8-11	5-9-14		
	CFM	314	393	471	550	628				
12	Pressure Loss (in.w.g.) - White Filter	0.078	0.121	0.174	0.237	0.308				
	Pressure Loss (in.w.g.) - Carbon Filter	0.102	0.151	0.208	0.276	0.352				
	NC	20	27	31	36	40				
	Throw (ft) - Coanda Effect	4-6-9	4-7-11	5-9-13	6-10-15	7-12-18				
	Throw (ft) - No Ceiling Effect	3-4-4	3-5-8	4-6-10	5-8-12	5-9-13				

Performance Notes

- NC Value based on 10 db room attenuation.

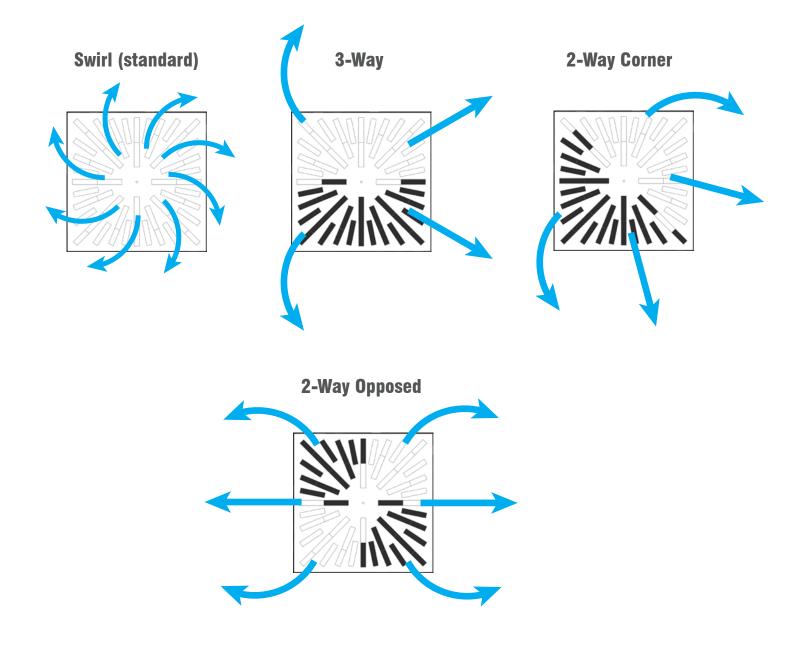
- Throw Values are based on isothermal air and terminal velocities of 100 fpm, 60 fpm and 40 fpm, respectively.

- Pressure Loss values represent the total pressure drop of the diffuser, plenum and filter assembled together.

Throw Correction Factors - Temperature - AXO-SX-UV

Delta T (Correction I	Factors		
Δ T (F)	Kh	КІ		
0	0.36	1	AL 0.2	
-2	.041	.985		bv= kh x Throw
-4	.046	.975		Throw'(Δ T)= KI x Throv
-6	.058	.965		
-8	.058	.95	Kh = Correction Factor for Vertical Diffusio	n
-10	.065	.935	KI = Throw Correction Factor	
-12	.072	.925	AL _{0.2} = Distance at which velocity reaches	40 fpm
-15	.084	.91		

Throw Correction Factors - Airflow Adjustments - AXO-SX-UV


Adjustment	Ка	
1-Way	1.4	Throw' = Ka x Throw
2-Way	1.2	
3-Way	1.1	

Induction Ratio and Delta T Ratio - AXO-SX-UV

	Ratios					
Throw (ft)	i	Delta T Ratio	induced room air = supplied cfm * i			
4	< 5	1.3	induced room air = cfm mixed for given throw			
6	8	0.08				
8	12	0.06]			
10	16	0.047	Delta T (Throw) = Delta T (Supply) * Delta T Ratio			
15	28	0.03				
20	43	0.023	Delta T (Supply) = T (Room) - T (Supply)			
25	56	0.018	Delta T (Throw) = T (Room) - T (Throw)			
30	78	0.015				

AXO-SX-UV Adjustment and Patterns

Single-Pass Germicidal Irradiation Performance - 100-300 CFM (1/2)

Bio-contaminants	100 cfm	150 cfm	200 cfm	250 cfm	300 cfm
Mycobacterium tuberculosis	>99.9999%	>99.9999%	>99.9999%	>99.9999%	>99.9999%
Legionella pneumophila	>99.9999%	>99.9999%	>99.9999%	>99.9999%	>99.9999%
Candida auris	>99.9999%	>99.9999%	>99.9999%	>99.9999%	>99.9999%
SARS-CoV-1	>99.9999%	>99.9999%	>99.9999%	>99.9999%	99.9999%
Proteus mirabilis	>99.9999%	>99.9999%	>99.9999%	99.9996%	99.9967%
Mycoplasma pneumoniae	>99.9999%	>99.9999%	>99.9999%	99.9994%	99.9952%
Listeria monocytogenes	>99.9999%	>99.9999%	99.9996%	99.9948%	99.9729%
Salmonella	>99.9999%	>99.9999%	99.9993%	99.9922%	99.9623%
Aeromonas	>99.9999%	>99.9999%	99.9981%	99.9832%	99.9285%
SARS-CoV-2	>99.9999%	99.9998%	99.9955%	99.9666%	99.8731%
Ricksettsia prowazekii	>99.9999%	99.9996%	99.9919%	99.9465%	99.8122%
Staphilococcus epidermis	>99.9999%	99.9990%	99.9829%	99.9030%	99.6916%
E. Coli	>99.9999%	99.9985%	99.9764%	99.8746%	99.6182%
Yersinia enterocolitica	>99.9999%	99.9982%	99.9729%	99.8599%	99.5811%
Coxiella burnetii	>99.9999%	99.9982%	99.9729%	99.8598%	99.5809%
Lactobacillus reuteri	>99.9999%	99.9982%	99.9729%	99.8598%	99.5809%
Vaccinia virus	>99.9999%	99.9982%	99.9721%	99.8568%	99.5734%
Smallpox	>99.9999%	99.9982%	99.9718%	99.8555%	99.5703%
Newcastle disease	>99.9999%	99.9965%	99.9549%	99.7894%	99.4119%
Acinetobacter baumanii	99.9999%	99.9892%	99.8938%	99.5824%	98.9594%
Influenza A virus	99.9997%	99.9794%	99.8282%	99.3862%	98.5655%
MRSA	99.9994%	99.9684%	99.7632%	99.2064%	98.2232%
Coxsachievirus	99.9993%	99.9636%	99.7364%	99.1355%	98.0918%
Avian Influenza virus	99.9988%	99.9480%	99.6556%	98.9292%	97.7193%
Measle virus	99.9987%	99.9445%	99.6386%	98.8872%	97.6449%
Pseudomonas aeruginosa	99.9986%	99.9429%	99.6307%	98.8680%	97.6110%
Serratia marcescens	99.9962%	99.8860%	99.3796%	98.2854%	96.6235%
Parvovirus H-1	99.9947%	99.8588%	99.2715%	98.0505%	96.2422%
Proteus vulgaris/mirabilis	99.9729%	99.5809%	98.3529%	96.2556%	93.5263%
Corynebacterium diphteriae	99.9447%	99.3265%	97.6490%	95.0227%	91.7934%
Ustilago zeae	99.9124%	99.0848%	97.0409%	94.0170%	90.4332%
Streptococcus pyogenes	99.8629%	98.7659%	96.2974%	92.8418%	88.8911%
Haemophilus influenza	99.8354%	98.6058%	95.9427%	92.2982%	88.1925%
Yeast	99.7885%	98.3526%	95.4016%	91.4869%	87.1647%
Klebsiella pneumoniae	99.7159%	97.9941%	94.6699%	90.4195%	85.8369%
Neisseria catarrhalis/meningitidis	99.6300%	97.6076%	93.9169%	89.3512%	84.5326%
Clostridium tetani	99.3448%	96.4984%	91.9053%	86.6168%	81.2875%
Vancomycin Resistant Enterococcus	98.8704%	94.9656%	89.3717%	83.3593%	77.5624%

Percentages on this table represent the minimum expected microbial deactivation for single-pass air treatment using UV-C germicidal irradiation only. The additional contribution of the air filter has not been considered.

Sanuvox, a company specialized in UV-C technologies, calculated these values using the lamp's lowest efficiency, at the end of its 2-year lifespan.

Single-Pass Germicidal Irradiation Performance - 100-300 CFM (2/2)

Bio-contaminants	100 cfm	150 cfm	200 cfm	250 cfm	300 cfm
Burkholderia cenocepacia	98.5490%	94.0510%	87.9543%	81.6064%	75.6094%
Adenovirus	98.4594%	93.8085%	87.5879%	81.1602%	75.1174%
Enterobacter cloacae	97.8717%	92.3202%	85.4114%	78.5607%	72.2875%
Reovirus	97.2486%	90.8861%	83.4127%	76.2414%	69.8108%
Norwalk virus	96.1334%	88.5655%	80.3364%	72.7773%	66.1850%
Echovirus	90.3990%	79.0326%	69.0145%	60.8324%	54.2098%
Bacillus Anthacis	83.2521%	69.6164%	59.0759%	51.0690%	44.8787%
Cryptococcus neoformans	83.2521%	69.6164%	59.0759%	51.0690%	44.8787%
Blastomyces dermatidis	82.7981%	69.0697%	58.5248%	50.5427%	44.3850%
Histoplasma capsulatum	82.7981%	69.0697%	58.5248%	50.5427%	44.3850%
Mucor spores	82.7981%	69.0697%	58.5248%	50.5427%	44.3850%
Bacillus subtilis spores	80.9576%	66.9010%	56.3624%	48.4903%	42.4683%
Francisella Tularensis	79.3443%	65.0570%	54.5515%	46.7872%	40.8874%
Fusarium oxysporum	78.1157%	63.6848%	53.2193%	45.5431%	39.7379%
Botrytis cinerea	62.6337%	48.1215%	38.8720%	32.5484%	27.9733%
Rhizopus nigricans	60.1987%	45.8916%	36.9117%	30.8234%	26.4416%
Nocardia asteroides	58.5026%	44.3651%	35.5815%	29.6590%	25.4112%
Penicillium digitatum	53.6181%	40.0808%	31.8957%	26.4573%	22.5925%
Bacillus Cereus spores	45.3095%	33.1233%	26.0470%	21.4466%	18.2218%
Algae blue-green	42.1803%	30.5961%	23.9607%	19.6788%	16.6910%
Streptocuccus Pneumoniae	40.9296%	29.5988%	23.1427%	18.9883%	16.0946%
Penicillium chrysogenum	37.1475%	26.6250%	20.7205%	16.9520%	14.3408%
Trichophyton rubrum	35.5815%	25.4112%	19.7389%	16.1305%	13.6352%
Candida albicans	35.3052%	25.1981%	19.5669%	15.9868%	13.5119%
Mucor mucedo	34.7491%	24.7700%	19.2220%	15.6986%	13.2648%
Clostridium Difficile spores	33.7359%	23.9932%	18.5972%	15.1775%	12.8181%
Cladosporium herbarum	32.6926%	23.1975%	17.9589%	14.6458%	12.3630%
Scopulariopsis brevicaulis	30.7938%	21.7598%	16.8097%	13.6906%	11.5465%
Bacillus Anthacis spores	28.2297%	19.8390%	15.2827%	12.4255%	10.4673%
Aspergillus fumigatus spores	10.4354%	7.0839%	5.3614%	4.3126%	3.6070%
Aspergillus niger spores	7.2164%	4.8707%	3.6757%	2.9516%	2.4658%
Cladosporium wemecki	5.3108%	3.5726%	2.6916%	2.1591%	1.8026%
stachybotrys chartarum	4.2922%	2.8823%	2.1696%	1.7395%	1.4517%
Myxobolus cerebralis	2.4310%	1.6273%	1.2230%	0.9796%	0.8170%
Moraxella	2.3265%	1.5571%	1.1701%	0.9372%	0.7816%

Percentages on this table represent the minimum expected microbial deactivation for single-pass air treatment using UV-C germicidal irradiation only. The additional contribution of the air filter has not been considered.

Single-Pass Germicidal Irradiation Performance - 350-500 CFM (1/2)

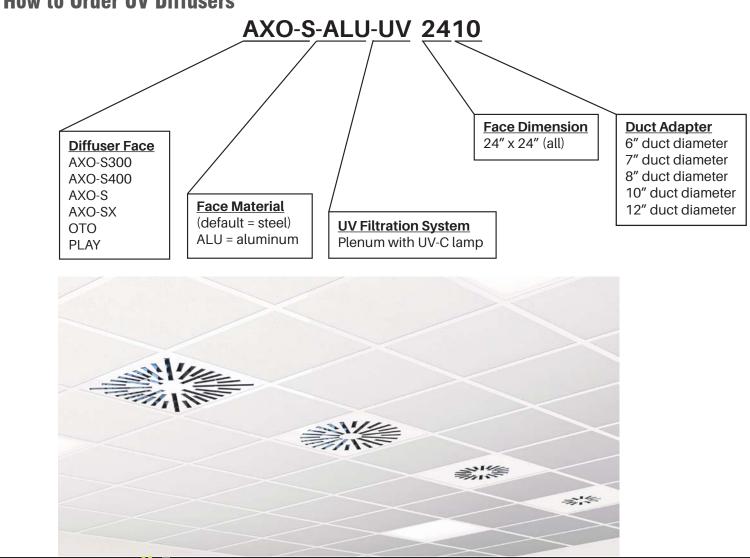
Bio-contaminants	350 cfm	400 cfm	450 cfm	500 cfm
Mycobacterium tuberculosis	>99.9999%	99.9997%	99.9987%	99.9959%
Legionella pneumophila	99.9999%	99.9993%	99.9975%	99.9929%
Candida auris	99.9999%	99.9994%	99.9976%	99.9930%
SARS-CoV-1	99.9990%	99.9958%	99.9872%	99.9687%
Proteus mirabilis	99.9854%	99.9561%	99.8963%	99.7939%
Mycoplasma pneumoniae	99.9803%	99.9428%	99.8688%	99.7453%
Listeria monocytogenes	99.9124%	99.7889%	99.5814%	99.2762%
Salmonella	99.8836%	99.7293%	99.4778%	99.1168%
Aeromonas	99.7989%	99.5630%	99.2008%	98.7046%
SARS-CoV-2	99.6710%	99.3277%	98.8280%	98.1717%
Ricksettsia prowazekii	99.5395%	99.0977%	98.4776%	97.6865%
Staphilococcus epidermis	99.2956%	98.6914%	97.8813%	96.8850%
E. Coli	99.1541%	98.4639%	97.5570%	96.4590%
Yersinia enterocolitica	99.0841%	98.3533%	97.4012%	96.2564%
Coxiella burnetii	99.0838%	98.3529%	97.4006%	96.2556%
Lactobacillus reuteri	99.0838%	98.3529%	97.4006%	96.2556%
Vaccinia virus	99.0697%	98.3307%	97.3695%	96.2153%
Smallpox	99.0640%	98.3217%	97.3570%	96.1991%
Newcastle disease	98.7751%	97.8763%	96.7418%	95.4114%
Acinetobacter baumanii	98.0022%	96.7418%	95.2335%	93.5378%
Influenza A virus	97.3695%	95.8549%	94.0961%	92.1652%
MRSA	96.8399%	95.1333%	93.1908%	91.0918%
Coxsachievirus	96.6407%	94.8658%	92.8591%	90.7023%
Avian Influenza virus	96.0858%	94.1311%	91.9576%	89.6522%
Measle virus	95.9767%	93.9881%	91.7837%	89.4510%
Pseudomonas aeruginosa	95.9272%	93.9234%	91.7051%	89.3603%
Serratia marcescens	94.5212%	92.1232%	89.5534%	86.9058%
Parvovirus H-1	93.9950%	91.4650%	88.7809%	86.0376%
Proteus vulgaris/mirabilis	90.4283%	87.1659%	83.8773%	80.6495%
Corynebacterium diphteriae	88.2704%	84.6672%	81.1154%	77.6901%
Ustilago zeae	86.6226%	82.7981%	79.0824%	75.5397%
Streptococcus pyogenes	84.7944%	80.7579%	76.8910%	73.2451%
Haemophilus influenza	83.9783%	79.8572%	75.9320%	72.2479%
Yeast	82.7902%	78.5561%	74.5549%	70.8228%
Klebsiella pneumoniae	81.2751%	76.9130%	72.8291%	69.0476%
Neisseria catarrhalis/meningitidis	79.8064%	75.3360%	71.1855%	67.3675%
Clostridium tetani	76.2254%	71.5489%	67.2844%	63.4170%
Vancomycin Resistant Enterococcus	72.2225%	67.3989%	63.0753%	59.2070%

Percentages on this table represent the minimum expected microbial deactivation for single-pass air treatment using UV-C germicidal irradiation only. The additional contribution of the air filter has not been considered.

Single-Pass Germicidal Irradiation Performance - 350-500 CFM (2/2)

Bio-contaminants	350 cfm	400 cfm	450 cfm	500 cfm
Burkholderia cenocepacia	70.1625%	65.2930%	60.9626%	57.1123%
Adenovirus	69.6473%	64.7692%	60.4393%	56.5952%
Enterobacter cloacae	66.7116%	61.8050%	57.4940%	53.6974%
Reovirus	64.1773%	59.2724%	54.9978%	51.2572%
Norwalk virus	60.5198%	55.6563%	51.4630%	47.8246%
Echovirus	48.8043%	44.3354%	40.5915%	37.4160%
Bacillus Anthacis	39.9830%	36.0280%	32.7726%	30.0493%
Cryptococcus neoformans	39.9830%	36.0280%	32.7726%	30.0493%
Blastomyces dermatidis	39.5226%	35.5988%	32.3718%	29.6741%
Histoplasma capsulatum	39.5226%	35.5988%	32.3718%	29.6741%
Mucor spores	39.5226%	35.5988%	32.3718%	29.6741%
Bacillus subtilis spores	37.7404%	33.9412%	30.8267%	28.2297%
Francisella Tularensis	36.2769%	32.5845%	29.5653%	27.0529%
Fusarium oxysporum	35.2162%	31.6036%	28.6551%	26.2051%
Botrytis cinerea	24.5166%	21.8156%	19.6482%	17.8711%
Rhizopus nigricans	23.1427%	20.5719%	18.5130%	16.8275%
Nocardia asteroides	22.2209%	19.7389%	17.7538%	16.1305%
Penicillium digitatum	19.7082%	17.4747%	15.6946%	14.2430%
Bacillus Cereus spores	15.8377%	14.0041%	12.5503%	11.3697%
Algae blue-green	14.4890%	12.7995%	11.4623%	10.3779%
Streptocuccus Pneumoniae	13.9646%	12.3317%	11.0403%	9.9935%
Penicillium chrysogenum	12.4255%	10.9609%	9.8049%	8.8694%
Trichophyton rubrum	11.8075%	10.4114%	9.3103%	8.4197%
Candida albicans	11.6996%	10.3155%	9.2240%	8.3413%
Mucor mucedo	11.4834%	10.1234%	9.0512%	8.1842%
Clostridium Difficile spores	11.0929%	9.7765%	8.7392%	7.9008%
Cladosporium herbarum	10.6951%	9.4235%	8.4219%	7.6126%
Scopulariopsis brevicaulis	9.9825%	8.7913%	7.8540%	7.0972%
Bacillus Anthacis spores	9.0419%	7.9580%	7.1060%	6.4187%
Aspergillus fumigatus spores	3.0998%	2.7176%	2.4194%	2.1801%
Aspergillus niger spores	2.1173%	1.8551%	1.6507%	1.4868%
Cladosporium wemecki	1.5471%	1.3550%	1.2053%	1.0855%
stachybotrys chartarum	1.2456%	1.0908%	0.9702%	0.8736%
Myxobolus cerebralis	0.7007%	0.6134%	0.5454%	0.4910%
Moraxella	0.6703%	0.5868%	0.5217%	0.4697%

Percentages on this table represent the minimum expected microbial deactivation for single-pass air treatment using UV-C germicidal irradiation only. The additional contribution of the air filter has not been considered.


Maintenance Schedule

Filter Replacement: every 3 to 6 months depending on the ventilation system's filtration quality and cleanliness of the duct line.

UV Lamp Replacement: every 2 years or 17,000 hours.

How to Specify AXO-UV

Supply and mounting of AXO-UV series high induction swirl UV Diffusers. With individually adjustable black ABS diffusion vanes featuring airflow straighteners on the back of the vanes. Available in four models for optimal supply of air volumes ranging between 50 cfm and 500 cfm. Dimension 24x24 inches. Hinged and removable face constructed from galvanized steel or aluminum face panel powder coated in white M9016. Plenum constructed of aluminum with integrated zero ozone emission UV-C lamp made of guartz, UV Barrier for the safety of room occupants, and two safety interlock switches powering off the system in the absence of the UV Barrier or when the face is open. Shall be supplied and installed with matching aluminum conical duct adapter for UV diffusers. Plenum must have earthquake tabs to secure the product to the building structure. Must be UL certified for the safety of its electrical system and UV emissions. SARS-CoV-2 single-pass germicidal irradiation performance greater than 99.9% at 458 cfm must have been demonstrated by triple redundancy tests with two control points conducted by a 3rd party laboratory with the real virus. By EffectiV HVAC Inc.

How to Order UV Diffusers

EFFECT

EFFECT

HIGH PERFORMANCE ARCHITECTURAL DIFFUSERS

UV DIFFUSERS

UVdiffusers.com

AIR PURIFICATION

OTO-UV SERIES Architectual Swirl UV Diffusers

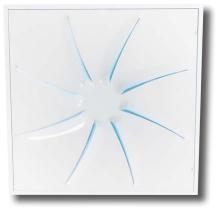
UV Diffusers help contain the spread of viruses and bacteria through ventilation systems

3-in-1 solution combining UV-C irradiation, air filtration and improved air mixing and room ventilation

Single-pass deactivation of airborne viruses and bacteria

Tested with the real SARS-CoV-2 virus in a 3rd party laboratory, achieving a 99.949% single-pass virus deactivation at 458 cfm

Hinged face provide easy access for filter change and maintenance


Fixed and reliable high induction swirl pattern, optimal between 100 cfm and 325 cfm

Suitable for new buildings and existing buildings

High velocity swirl jets provide efficient mixing of supplied air with room air

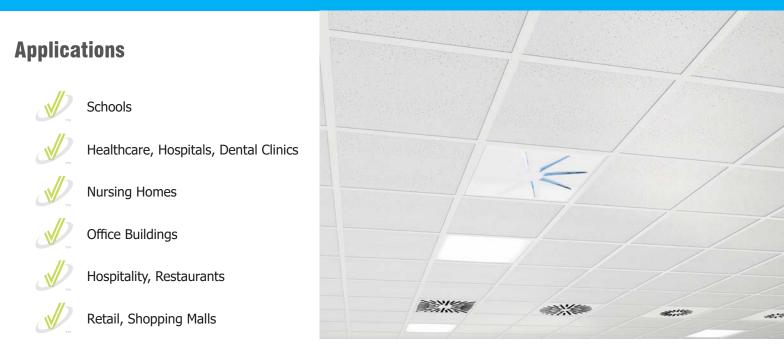
Architecturally appealing curves and design

Lay-in, duct mounted or drywall mounted, suitable for all ceilings

OTO-UV

Built-in earthquake tabs

UV Diffusers by EffectiV treat the recycled air in commercial and institutional to help prevent the spread of airborne viruses and bacteria through the ventilation system. They are a 3-in-1 solution cleaning recycled air from pathogens using UV-C light, filtering the air from larger particles with a MERV-9 filter, and improving air mixing and room ventilation. By treating the air at the end of the duct line and by optimizing both the UV light intensity and microbes' exposure time inside the irradiation chamber, UV Diffusers achieve very high single-pass microbial deactivation rates.


They are a practical solution which can be installed in most existing buildings without other significant upgrades, and offer easy access for maintenance and filter replacement. They are also an energy efficient solution to treat the air.

OTO-UV architectural swirl diffusers are designed to be used in air conditioning, ventilation and heating systems at a temperature differential up to 22°F (12°C) and a maximum temperature of 110°F (43°C). They can be mounted in false ceilings, on drywall, or suspended from the ceiling, from 8.5 feet to 13 feet (2.6 up to 4 meters) high. OTO diffusers allow a flow variation of 60% while keeping the air stream stable.

The particular design of OTO diffusers creates a uniform airflow along the length of each aperture. The radial configuration of the eight curved slots produces a rotational jet pattern. The resulting swirl diffusion with high discharge velocity results in a very efficient mixing of supplied air with room air, a high induction ratio and reduced air stratification.

As a result of the collaboration of MADEL with Lievore, Altherr & Molina, OTO's original design combines smooth curves and high performance. EffectiV HVAC took it to the next level by integrating this unique diffuser face in a UV Diffuser.

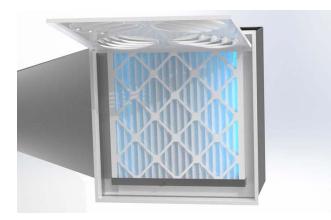
PREVENTING THE SPREAD OF VIRUSES AND BACTERIA THROUGH VENTILATION SYSTEMS IN COMMERCIAL BUILDINGS

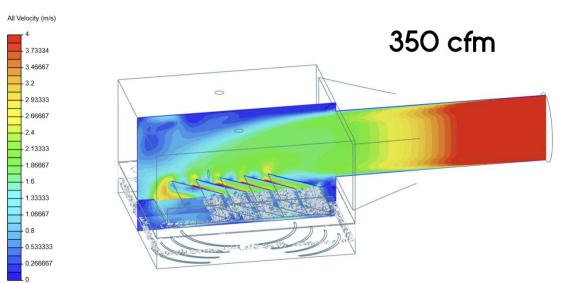
Some airborne virus particles are too small to be entirely caught by standard filters. Also, the greater the filter efficiency is, the more pressure is added to the HVAC system. Most ventilation systems in commercial and institutional buildings recycle and recirculate a large percentage of the air without proper treatment and filtration. This is done in order to save energy, but quite problematic when dealing with airborne diseases. Microbes can easily spread between rooms via the ventilation system.

UV Diffusers are a high efficiency single-pass solution to treat recycled air. Diffusers are the last thing that the air passes through before entering the room, making any possible re-contamination of the air impossible. Once UV Diffusers are installed in a space, they act as a shield against pathogens and contaminants, protecting that room from the rest of the building.

UV Diffusers can replace existing diffusers in the whole building, or be installed in a single space. Easy access to ceiling diffusers gives building owners and occupants a lot of flexibility in implementing this solution.

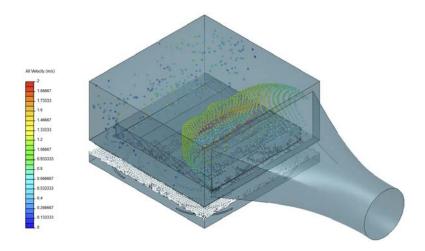
The use of this device is a supplement to and not a substitute for standard infection control practices; users must continue to follow all current infection control practices, including those related to the cleaning and disinfection of environmental surfaces.


HIGH PERFORMANCE ARCHITECTURAL DIFFUSERS


How UV Diffusers Work

1. Air Filtration

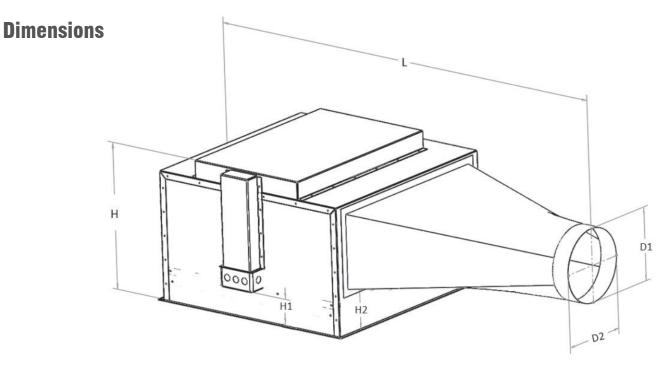
UV Diffusers integrate a UV-resistant MERV-9 or MERV-7 filter to catch larger particles including dust, spores and mites, removing allergens and other irritants, and improving air quality.

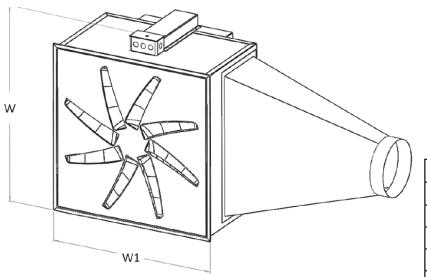

The filter also helps to pressurize the air inside the plenum and slow it down significantly.

2. UV-C Germicidal Irradiation

UV Diffusers also integrate a UV-C lamp to irradiate viruses and bacteria. The air velocity being significantly lower in the diffuser than it is in the duct, pathogens exposure to UV-C light and therefore disinfection efficiency are multiplied by a factor of 2 to 8 times.

The placement of the UV lamp, the airflow trajectory, the shape and dimension of the plenum and collar for light reflection and the materials - everything has been thought out in order to improve air disinfection efficiency.




EFFECTIV-HVAC.COM

3. Improved Ventilation

OTO-UV high induction swirl diffusers feature a high discharge velocity and provide better mixing of the new air with room air when compared to common diffusers. The result is a faster removal of contaminants. Another benefit is a significant improvement of occupants' thermal comfort. Better air mixing can also help optimizing the performance of the HVAC system and reduce energy consumption.

Din	Dimensions		
W	25 2/3″		
W1	23 7/8″		
Н	15 7/8″		
H1	3 9/16″		
H2	4 3/4″		
L	47 1/2″		

EFFECT

Duct Diameter	D1	D2
6″	5 ⁷ /8″	5 ⁷ /8″
7″	6 7/8″	6 7/8″
8″	7 7/8″	7 7/8″
10″	11″	8″
12″	16″	8″

Safety

UV Diffusers certified UL in USA and Canada for safety in regards to electrical and UV irradiation hazards. UV-C light is contained within the diffuser in order to ensure room occupants' safety.

Interlock switches are also in place to ensure maintenance personnel's safety.

High quality lamps made of quartz do not emit any ozone nor other harmful particles. UV Diffusers are certified Zero Ozone Emission by UL

UV Diffusers are also certified by the California Air Resources Board

Mechanical Specifications

Maximum Product Weight	34 lbs
Hinged Face	Yes
Removable Face	Yes
Filter Replacement Through Face	Yes
UV Lamp Replacement Through Face	Yes

Electrical Specifications

Diffuser Voltage	120 V / 240 V
UV Diffuser Wattage	40 W
Safety Switch - Opened Face	Yes
Safety Switch - No UVC Barrier	Yes

UV Specifications

12.0 W
90 µW/cm2
No
No
Yes
No
17,000 hours
T6 (19 mm)
`J' Shape
Quartz

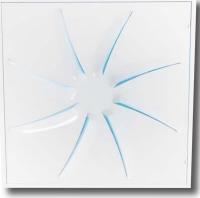
Filter Options for UV Diffusers

UV-Resistant 20" x 20" x 2" White MERV-9 Pleated Filter

UVFILTER-W-M9		
Minimum Efficiency Rating Value (AHRAE 52.2)	MERV 9 @ 1968 cfm	
Initial Resistance @ 492 cfm	0.021 in.w.g	
UL Certification	Yes	

EFFEC

UVF	ILTER	-C-M7
-----	-------	-------


UV-Resistant 20" x 20" x 2" MERV-7 Carbon Pleated Filter

UVFILTER-C-M7		
Minimum Efficiency Rating Value (AHRAE 52.2)	MERV 7 @ 1968 cfm	
Initial Resistance @ 492 cfm	0.08 in.w.g	
UL Certification	Yes	

Airflow Performance Data

Dim	Free Area (sqf)	Min cfm	Max cfm
24''x 24'' (605mm)	0.0427	100	325

OTO-UV

OTO-UV Performance Data

Neck Size	Neck (fpm) Velocity	200	300	400	500	600	700	800	1000
(inches)	Velocity Pressure (H2O)	0.002	0.006	0.01	0.016	0.022	0.031	0.041	.062
	CFM			79	98	118	137	157	196
	Pressure Loss (in.w.g.) - White Filter			0.014	0.020	0.027	0.036	0.046	0.068
	Pressure Loss (in.w.g.) - Carbon Filter			0.021	0.028	0.037	0.047	0.059	0.084
6	NC			< 15	< 15	< 15	< 15	< 15	20
	Throw (ft) - Coanda Effect			2-3-3	2-3-4	2-3-5	2-4-6	3-4-6	3-5-8
	Throw (ft) - No Ceiling Effect			1-2-3	1-2-3	1-2-7	2-3-4	2-3-5	2-4-6
	CFM		105	140	175	209	244	279	349
	Pressure Loss (in.w.g.) - White Filter		0.022	0.037	0.055	0.077	0.102	0.131	0.201
8	Pressure Loss (in.w.g.) - Carbon Filter		0.031	0.049	0.070	0.094	0.122	0.153	0.227
°	NC		< 15	< 15	17	22	26	30	36
	Throw (ft) - Coanda Effect		2-3-4	2-4-6	3-5-7	3-6-8	4-6-10	4-7-11	6-9-14
	Throw (ft) - No Ceiling Effect		1-2-3	2-3-4	2-4-5	3-4-6	3-5-7	3-6-8	4-7-10
	CFM	109	164	218	273	327	382	436	545
	Pressure Loss (in.w.g.) - White Filter	0.024	0.049	0.083	0.126	0.177	0.238	0.307	0.472
10	Pressure Loss (in.w.g.) - Carbon Filter	0.033	0.063	0.100	0.148	0.202	0.267	0.339	0.511
10	NC	< 15	16	23	29	34	38	41	47
	Throw (ft) - Coanda Effect	2-3-4	3-4-7	4-6-9	4-7-11	5-9-13	6-10-15	7-12-17	9-14-22
	Throw (ft) - No Ceiling Effect	1-2-3	2-3-5	3-4-7	3-5-8	4-7-10	5-8-11	5-9-13	6-11-16

Performance Notes

- NC Value based on 10 db room attenuation.

- Throw Values are based on isothermal air and terminal velocities of 100 fpm, 60 fpm and 40 fpm, respectively.

- Pressure Loss values represent the total pressure drop of the diffuser, plenum and filter assembled together.

OTO-UV Delta T Correction Factors

Delta T (Correction	Factors
Δ T (F)	Kh	КІ
0	0.04	1
-2	0.045	0.945
-4	0.05	0.91
-6	0.055	0.87
-8	0.06	0.84
-10	0.068	0.82
-12	0.076	0.805
-15	0.089	0.78

OTO-UV Induction Ratio and Delta T Ratio

	Ratios		
Throw (ft)	i	Delta T Ratio	induced room air = supplied cfm * i
4	7	0.12	
6	12	0.057	
8	14	0.04	
10	18	0.029	Delta T (Throw) = Delta T (Supply) * Delta T Ratio
15	28	0.017	
20	38	-	Delta T (Supply) = T (Room) - T (Supply)
25	47	-	Delta T (Throw) = T (Room) - T (Throw)
30	58	-	

EFFECTIV-HVAC.COM

Single-Pass Germicidal Irradiation Performance - 100-300 CFM (1/2)

Bio-contaminants	100 cfm	150 cfm	200 cfm	250 cfm	300 cfm
Mycobacterium tuberculosis	>99.9999%	>99.9999%	>99.9999%	>99.9999%	>99.9999%
Legionella pneumophila	>99.9999%	>99.9999%	>99.9999%	>99.9999%	>99.9999%
Candida auris	>99.9999%	>99.9999%	>99.9999%	>99.9999%	>99.9999%
SARS-CoV-1	>99.9999%	>99.9999%	>99.9999%	>99.9999%	99.9999%
Proteus mirabilis	>99.9999%	>99.9999%	>99.9999%	99.9996%	99.9967%
Mycoplasma pneumoniae	>99.9999%	>99.9999%	>99.9999%	99.9994%	99.9952%
Listeria monocytogenes	>99.9999%	>99.9999%	99.9996%	99.9948%	99.9729%
Salmonella	>99.9999%	>99.9999%	99.9993%	99.9922%	99.9623%
Aeromonas	>99.9999%	>99.9999%	99.9981%	99.9832%	99.9285%
SARS-CoV-2	>99.9999%	99.9998%	99.9955%	99.9666%	99.8731%
Ricksettsia prowazekii	>99.9999%	99.9996%	99.9919%	99.9465%	99.8122%
Staphilococcus epidermis	>99.9999%	99.9990%	99.9829%	99.9030%	99.6916%
E. Coli	>99.9999%	99.9985%	99.9764%	99.8746%	99.6182%
Yersinia enterocolitica	>99.9999%	99.9982%	99.9729%	99.8599%	99.5811%
Coxiella burnetii	>99.9999%	99.9982%	99.9729%	99.8598%	99.5809%
Lactobacillus reuteri	>99.9999%	99.9982%	99.9729%	99.8598%	99.5809%
Vaccinia virus	>99.9999%	99.9982%	99.9721%	99.8568%	99.5734%
Smallpox	>99.9999%	99.9982%	99.9718%	99.8555%	99.5703%
Newcastle disease	>99.9999%	99.9965%	99.9549%	99.7894%	99.4119%
Acinetobacter baumanii	99.9999%	99.9892%	99.8938%	99.5824%	98.9594%
Influenza A virus	99.9997%	99.9794%	99.8282%	99.3862%	98.5655%
MRSA	99.9994%	99.9684%	99.7632%	99.2064%	98.2232%
Coxsachievirus	99.9993%	99.9636%	99.7364%	99.1355%	98.0918%
Avian Influenza virus	99.9988%	99.9480%	99.6556%	98.9292%	97.7193%
Measle virus	99.9987%	99.9445%	99.6386%	98.8872%	97.6449%
Pseudomonas aeruginosa	99.9986%	99.9429%	99.6307%	98.8680%	97.6110%
Serratia marcescens	99.9962%	99.8860%	99.3796%	98.2854%	96.6235%
Parvovirus H-1	99.9947%	99.8588%	99.2715%	98.0505%	96.2422%
Proteus vulgaris/mirabilis	99.9729%	99.5809%	98.3529%	96.2556%	93.5263%
Corynebacterium diphteriae	99.9447%	99.3265%	97.6490%	95.0227%	91.7934%
Ustilago zeae	99.9124%	99.0848%	97.0409%	94.0170%	90.4332%
Streptococcus pyogenes	99.8629%	98.7659%	96.2974%	92.8418%	88.8911%
Haemophilus influenza	99.8354%	98.6058%	95.9427%	92.2982%	88.1925%
Yeast	99.7885%	98.3526%	95.4016%	91.4869%	87.1647%
Klebsiella pneumoniae	99.7159%	97.9941%	94.6699%	90.4195%	85.8369%
Neisseria catarrhalis/meningitidis	99.6300%	97.6076%	93.9169%	89.3512%	84.5326%
Clostridium tetani	99.3448%	96.4984%	91.9053%	86.6168%	81.2875%
Vancomycin Resistant Enterococcus	98.8704%	94.9656%	89.3717%	83.3593%	77.5624%

Percentages on this table represent the minimum expected microbial deactivation for single-pass air treatment using UV-C germicidal irradiation only. The additional contribution of the air filter has not been considered.

Single-Pass Germicidal Irradiation Performance - 100-300 CFM (2/2)

Bio-contaminants	100 cfm	150 cfm	200 cfm	250 cfm	300 cfm
Burkholderia cenocepacia	98.5490%	94.0510%	87.9543%	81.6064%	75.6094%
Adenovirus	98.4594%	93.8085%	87.5879%	81.1602%	75.1174%
Enterobacter cloacae	97.8717%	92.3202%	85.4114%	78.5607%	72.2875%
Reovirus	97.2486%	90.8861%	83.4127%	76.2414%	69.8108%
Norwalk virus	96.1334%	88.5655%	80.3364%	72.7773%	66.1850%
Echovirus	90.3990%	79.0326%	69.0145%	60.8324%	54.2098%
Bacillus Anthacis	83.2521%	69.6164%	59.0759%	51.0690%	44.8787%
Cryptococcus neoformans	83.2521%	69.6164%	59.0759%	51.0690%	44.8787%
Blastomyces dermatidis	82.7981%	69.0697%	58.5248%	50.5427%	44.3850%
Histoplasma capsulatum	82.7981%	69.0697%	58.5248%	50.5427%	44.3850%
Mucor spores	82.7981%	69.0697%	58.5248%	50.5427%	44.3850%
Bacillus subtilis spores	80.9576%	66.9010%	56.3624%	48.4903%	42.4683%
Francisella Tularensis	79.3443%	65.0570%	54.5515%	46.7872%	40.8874%
Fusarium oxysporum	78.1157%	63.6848%	53.2193%	45.5431%	39.7379%
Botrytis cinerea	62.6337%	48.1215%	38.8720%	32.5484%	27.9733%
Rhizopus nigricans	60.1987%	45.8916%	36.9117%	30.8234%	26.4416%
Nocardia asteroides	58.5026%	44.3651%	35.5815%	29.6590%	25.4112%
Penicillium digitatum	53.6181%	40.0808%	31.8957%	26.4573%	22.5925%
Bacillus Cereus spores	45.3095%	33.1233%	26.0470%	21.4466%	18.2218%
Algae blue-green	42.1803%	30.5961%	23.9607%	19.6788%	16.6910%
Streptocuccus Pneumoniae	40.9296%	29.5988%	23.1427%	18.9883%	16.0946%
Penicillium chrysogenum	37.1475%	26.6250%	20.7205%	16.9520%	14.3408%
Trichophyton rubrum	35.5815%	25.4112%	19.7389%	16.1305%	13.6352%
Candida albicans	35.3052%	25.1981%	19.5669%	15.9868%	13.5119%
Mucor mucedo	34.7491%	24.7700%	19.2220%	15.6986%	13.2648%
Clostridium Difficile spores	33.7359%	23.9932%	18.5972%	15.1775%	12.8181%
Cladosporium herbarum	32.6926%	23.1975%	17.9589%	14.6458%	12.3630%
Scopulariopsis brevicaulis	30.7938%	21.7598%	16.8097%	13.6906%	11.5465%
Bacillus Anthacis spores	28.2297%	19.8390%	15.2827%	12.4255%	10.4673%
Aspergillus fumigatus spores	10.4354%	7.0839%	5.3614%	4.3126%	3.6070%
Aspergillus niger spores	7.2164%	4.8707%	3.6757%	2.9516%	2.4658%
Cladosporium wemecki	5.3108%	3.5726%	2.6916%	2.1591%	1.8026%
stachybotrys chartarum	4.2922%	2.8823%	2.1696%	1.7395%	1.4517%
Myxobolus cerebralis	2.4310%	1.6273%	1.2230%	0.9796%	0.8170%
Moraxella	2.3265%	1.5571%	1.1701%	0.9372%	0.7816%

Percentages on this table represent the minimum expected microbial deactivation for single-pass air treatment using UV-C germicidal irradiation only. The additional contribution of the air filter has not been considered.

Single-Pass Germicidal Irradiation Performance - 350-500 CFM (1/2)

Bio-contaminants	350 cfm	400 cfm	450 cfm	500 cfm
Mycobacterium tuberculosis	>99.9999%	99.9997%	99.9987%	99.9959%
Legionella pneumophila	99.9999%	99.9993%	99.9975%	99.9929%
Candida auris	99.9999%	99.9994%	99.9976%	99.9930%
SARS-CoV-1	99.9990%	99.9958%	99.9872%	99.9687%
Proteus mirabilis	99.9854%	99.9561%	99.8963%	99.7939%
Mycoplasma pneumoniae	99.9803%	99.9428%	99.8688%	99.7453%
Listeria monocytogenes	99.9124%	99.7889%	99.5814%	99.2762%
Salmonella	99.8836%	99.7293%	99.4778%	99.1168%
Aeromonas	99.7989%	99.5630%	99.2008%	98.7046%
SARS-CoV-2	99.6710%	99.3277%	98.8280%	98.1717%
Ricksettsia prowazekii	99.5395%	99.0977%	98.4776%	97.6865%
Staphilococcus epidermis	99.2956%	98.6914%	97.8813%	96.8850%
E. Coli	99.1541%	98.4639%	97.5570%	96.4590%
Yersinia enterocolitica	99.0841%	98.3533%	97.4012%	96.2564%
Coxiella burnetii	99.0838%	98.3529%	97.4006%	96.2556%
Lactobacillus reuteri	99.0838%	98.3529%	97.4006%	96.2556%
Vaccinia virus	99.0697%	98.3307%	97.3695%	96.2153%
Smallpox	99.0640%	98.3217%	97.3570%	96.1991%
Newcastle disease	98.7751%	97.8763%	96.7418%	95.4114%
Acinetobacter baumanii	98.0022%	96.7418%	95.2335%	93.5378%
Influenza A virus	97.3695%	95.8549%	94.0961%	92.1652%
MRSA	96.8399%	95.1333%	93.1908%	91.0918%
Coxsachievirus	96.6407%	94.8658%	92.8591%	90.7023%
Avian Influenza virus	96.0858%	94.1311%	91.9576%	89.6522%
Measle virus	95.9767%	93.9881%	91.7837%	89.4510%
Pseudomonas aeruginosa	95.9272%	93.9234%	91.7051%	89.3603%
Serratia marcescens	94.5212%	92.1232%	89.5534%	86.9058%
Parvovirus H-1	93.9950%	91.4650%	88.7809%	86.0376%
Proteus vulgaris/mirabilis	90.4283%	87.1659%	83.8773%	80.6495%
Corynebacterium diphteriae	88.2704%	84.6672%	81.1154%	77.6901%
Ustilago zeae	86.6226%	82.7981%	79.0824%	75.5397%
Streptococcus pyogenes	84.7944%	80.7579%	76.8910%	73.2451%
Haemophilus influenza	83.9783%	79.8572%	75.9320%	72.2479%
Yeast	82.7902%	78.5561%	74.5549%	70.8228%
Klebsiella pneumoniae	81.2751%	76.9130%	72.8291%	69.0476%
Neisseria catarrhalis/meningitidis	79.8064%	75.3360%	71.1855%	67.3675%
Clostridium tetani	76.2254%	71.5489%	67.2844%	63.4170%
Vancomycin Resistant Enterococcus	72.2225%	67.3989%	63.0753%	59.2070%

Percentages on this table represent the minimum expected microbial deactivation for single-pass air treatment using UV-C germicidal irradiation only. The additional contribution of the air filter has not been considered.

Sanuvox, a company specialized in UV-C technologies, calculated these values using the lamp's lowest efficiency, at the end of its 2-year lifespan.

HIGH PERFORMANCE ARCHITECTURAL DIFFUSERS

Single-Pass Germicidal Irradiation Performance - 350-500 CFM (2/2)

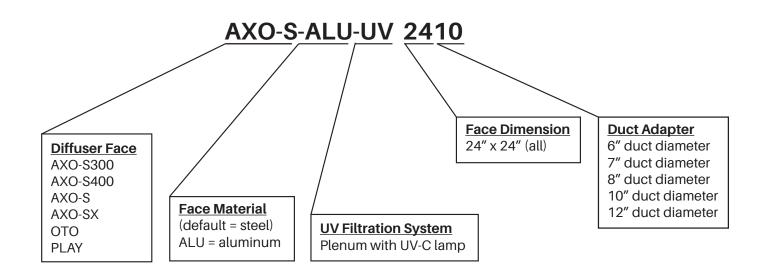
Bio-contaminants	350 cfm	400 cfm	450 cfm	500 cfm
Burkholderia cenocepacia	70.1625%	65.2930%	60.9626%	57.1123%
Adenovirus	69.6473%	64.7692%	60.4393%	56.5952%
Enterobacter cloacae	66.7116%	61.8050%	57.4940%	53.6974%
Reovirus	64.1773%	59.2724%	54.9978%	51.2572%
Norwalk virus	60.5198%	55.6563%	51.4630%	47.8246%
Echovirus	48.8043%	44.3354%	40.5915%	37.4160%
Bacillus Anthacis	39.9830%	36.0280%	32.7726%	30.0493%
Cryptococcus neoformans	39.9830%	36.0280%	32.7726%	30.0493%
Blastomyces dermatidis	39.5226%	35.5988%	32.3718%	29.6741%
Histoplasma capsulatum	39.5226%	35.5988%	32.3718%	29.6741%
Mucor spores	39.5226%	35.5988%	32.3718%	29.6741%
Bacillus subtilis spores	37.7404%	33.9412%	30.8267%	28.2297%
Francisella Tularensis	36.2769%	32.5845%	29.5653%	27.0529%
Fusarium oxysporum	35.2162%	31.6036%	28.6551%	26.2051%
Botrytis cinerea	24.5166%	21.8156%	19.6482%	17.8711%
Rhizopus nigricans	23.1427%	20.5719%	18.5130%	16.8275%
Nocardia asteroides	22.2209%	19.7389%	17.7538%	16.1305%
Penicillium digitatum	19.7082%	17.4747%	15.6946%	14.2430%
Bacillus Cereus spores	15.8377%	14.0041%	12.5503%	11.3697%
Algae blue-green	14.4890%	12.7995%	11.4623%	10.3779%
Streptocuccus Pneumoniae	13.9646%	12.3317%	11.0403%	9.9935%
Penicillium chrysogenum	12.4255%	10.9609%	9.8049%	8.8694%
Trichophyton rubrum	11.8075%	10.4114%	9.3103%	8.4197%
Candida albicans	11.6996%	10.3155%	9.2240%	8.3413%
Mucor mucedo	11.4834%	10.1234%	9.0512%	8.1842%
Clostridium Difficile spores	11.0929%	9.7765%	8.7392%	7.9008%
Cladosporium herbarum	10.6951%	9.4235%	8.4219%	7.6126%
Scopulariopsis brevicaulis	9.9825%	8.7913%	7.8540%	7.0972%
Bacillus Anthacis spores	9.0419%	7.9580%	7.1060%	6.4187%
Aspergillus fumigatus spores	3.0998%	2.7176%	2.4194%	2.1801%
Aspergillus niger spores	2.1173%	1.8551%	1.6507%	1.4868%
Cladosporium wemecki	1.5471%	1.3550%	1.2053%	1.0855%
stachybotrys chartarum	1.2456%	1.0908%	0.9702%	0.8736%
Myxobolus cerebralis	0.7007%	0.6134%	0.5454%	0.4910%
Moraxella	0.6703%	0.5868%	0.5217%	0.4697%

Percentages on this table represent the minimum expected microbial deactivation for single-pass air treatment using UV-C germicidal irradiation only. The additional contribution of the air filter has not been considered.

Sanuvox, a company specialized in UV-C technologies, calculated these values using the lamp's lowest efficiency, at the end of its 2-year lifespan.

EFFECTIV-HVAC.COM

Maintenance Schedule


Filter Replacement: every 3 to 6 months depending on the ventilation system's filtration quality and cleanliness of the duct line.

UV Lamp Replacement: every 2 years or 17,000 hours.

How to Specify OTO-UV

Supply and mounting of square architectural swirl UV Diffuser OTO-UV, with stamped curved slots in radial pattern, dimension 24x24 inches. Hinged and removable face constructed from galvanized steel face panel powder coated in white M9016. Plenum constructed of aluminum with integrated zero ozone emission UV-C lamp made of quartz, UV Barrier for the safety of room occupants, and two safety interlock switches powering off the system in the absence of the UV Barrier or when the face is open. Shall be supplied and installed with matching aluminum conical duct adapter for UV diffusers. Plenum must have earthquake tabs to secure the product to the building structure. Must be UL certified for the safety of its electrical system and UV emissions. SARS-CoV-2 single-pass germicidal irradiation performance greater than 99.9% at 458 cfm must have been demonstrated by triple redundancy tests with two control points conducted by a 3rd party laboratory with the real virus. By EffectiV HVAC Inc.

How to Order UV Diffusers

UV DIFFUSERS

UVdiffusers.com

PLAY-UV SERIES Adjustable UV Diffuser

UV Diffusers help contain the spread of viruses and bacteria through ventilation systems

3-in-1 solution combining UV-C irradiation, air filtration and improved air mixing and room ventilation

Single-pass deactivation of airborne viruses and bacteria

Tested with the real SARS-CoV-2 virus in a 3rd party laboratory, achieving a 99.949% single-pass virus deactivation at 458 cfm

Hinged face provide easy access for filter change and maintenance

360 degree adjustable airflow, optimal between 100 cfm and 400 cfm

Suitable for new buildings and existing buildings

High discharge velocity provide efficient mixing of supplied air with room air

Architecturally appealing curves and design

Lay-in, duct mounted or drywall mounted, suitable for all ceilings

PLAY-UV

Built-in earthquake tabs

UV Diffusers by EffectiV treat the recycled air in commercial and institutional to help prevent the spread of airborne viruses and bacteria through the ventilation system. They are a 3-in-1 solution cleaning recycled air from pathogens using UV-C light, filtering the air from larger particles with a MERV-9 filter, and improving air mixing and room ventilation. By treating the air at the end of the duct line and by optimizing both the UV light intensity and microbes' exposure time inside the irradiation chamber, UV Diffusers achieve very high single-pass microbial deactivation rates.

They are a practical solution which can be installed in most existing buildings without other significant upgrades, and offer easy access for maintenance and filter replacement. They are also an energy efficient solution to treat the air.

PLAY-UV adjustable diffusers are designed to be used in air conditioning, ventilation and heating systems at a temperature differential up to 22°F (12°C) and a maximum temperature of 110°F (43°C). They can be mounted in false ceilings, on drywall, or suspended from the ceiling, from 8.5 feet to 13 feet (2.6 up to 4 meters) high. PLAY diffusers allow a flow variation of 60% while keeping the air stream stable.

PLAY is the only diffuser in the world providing a full 360-degree horizontal adjustment of the airflow. Each round sector can be manually rotated from the face to redirect the airflow exactly where we need it. It ships as a swirl diffuser and can be manually adjusted to make it a 1-way, 2-way, 3-way or 4-way diffuser, or any hybrid combination.

PLAY allows us to also reach parts of the room which would otherwise lack proper ventilation, either because of the room configuration, the diffuser's location, objects obstructing the air jet, or other factors. PLAY also allows us to improve thermal comfort by redirecting the air jet away from people feeling air drafts, or towards sources of heat gain/loss like large windows. Thanks to the PLAY diffuser, HVAC technicians can shape the air circulation in the room with precision, ensuring an almost perfect ventilation in any room configuration.

Applications

PREVENTING THE SPREAD OF VIRUSES AND BACTERIA THROUGH VENTILATION SYSTEMS IN COMMERCIAL BUILDINGS

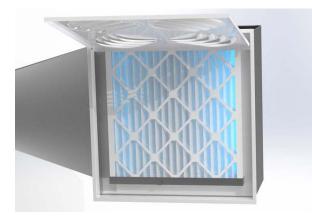
Some airborne virus particles are too small to be entirely caught by standard filters. Also, the greater the filter efficiency is, the more pressure is added to the HVAC system. Most ventilation systems in commercial and institutional buildings recycle and recirculate a large percentage of the air without proper treatment and filtration. This is done in order to save energy, but quite problematic when dealing with airborne diseases. Microbes can easily spread between rooms via the ventilation system.

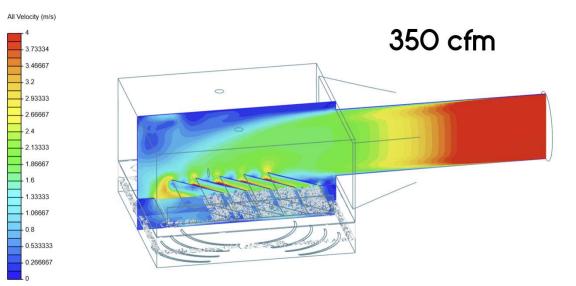
UV Diffusers are a high efficiency single-pass solution to treat recycled air. Diffusers are the last thing that the air passes through before entering the room, making any possible re-contamination of the air impossible. Once UV Diffusers are installed in a space, they act as a shield against pathogens and contaminants, protecting that room from the rest of the building.

UV Diffusers can replace existing diffusers in the whole building, or be installed in a single space. Easy access to ceiling diffusers gives building owners and occupants a lot of flexibility in implementing this solution.

The use of this device is a supplement to and not a substitute for standard infection control practices; users must continue to follow all current infection control practices, including those related to the cleaning and disinfection of environmental surfaces.

59

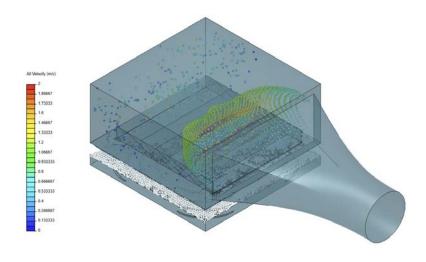

HIGH PERFORMANCE ARCHITECTURAL DIFFUSERS

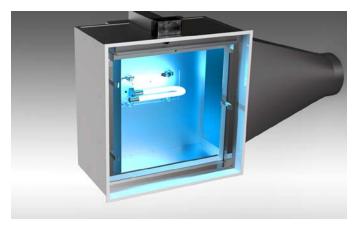

How UV Diffusers Work

1. Air Filtration

UV Diffusers integrate a UV-resistant MERV-9 or MERV-7 filter to catch larger particles including dust, spores and mites, removing allergens and other irritants, and improving air quality.

The filter also helps to pressurize the air inside the plenum and slow it down significantly.

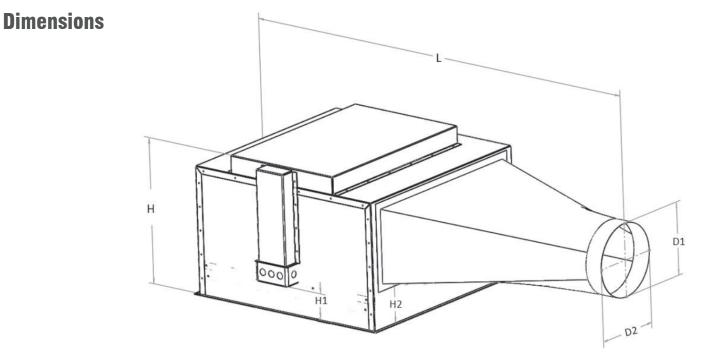


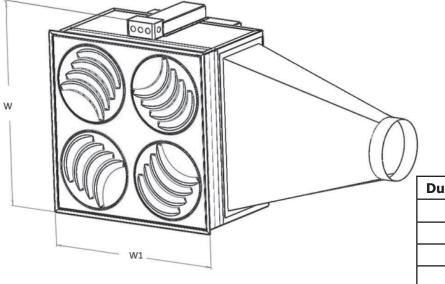


2. UV-C Germicidal Irradiation

EFFECT

UV Diffusers also integrate a UV-C lamp to irradiate viruses and bacteria. The air velocity being significantly lower in the diffuser than it is in the duct, pathogens exposure to UV-C light and therefore disinfection efficiency are multiplied by a factor of 2 to 8 times.


The placement of the UV lamp, the airflow trajectory, the shape and dimension of the plenum and collar for light reflection and the materials - everything has been thought out in order to improve air disinfection efficiency.



3. Improved Ventilation

PLAY-UV adjustable UV diffuser features a 360-degree adjustment of the airflow combined with a high discharge velocity to provide better mixing of the new air with room air. The result is an improved room ventilation and faster removal of contaminants. Another benefit is a significant improvement of occupants' thermal comfort. Better air mixing can also help optimizing the performance of the HVAC system and reduce energy consumption.

Din	Dimensions					
W	25 2/3″					
W1	23 7/8″					
Н	15 7/8″					
H1	3 9/16″					
H2	4 3/4″					
L	47 1/2″					

Duct Diameter	D1	D2
6″	5 ⁷ /8″	5 ⁷ /8″
7″	6 7/8″	6 7/8″
8″	7 7/8″	7 7/8″
10″	11″	8″
12″	16″	8″

Safety

UV Diffusers certified UL in USA and Canada for safety in regards to electrical and UV irradiation hazards. UV-C light is contained within the diffuser in order to ensure room occupants' safety.

Interlock switches are also in place to ensure maintenance personnel's safety.

High quality lamps made of quartz do not emit any ozone nor other harmful particles. UV Diffusers are certified Zero Ozone Emission by UL

UV Diffusers are also certified by the California Air Resources Board

Mechanical Specifications

Maximum Product Weight	34 lbs
Hinged Face	Yes
Removable Face	Yes
Filter Replacement Through Face	Yes
UV Lamp Replacement Through Face	Yes

Electrical Specifications

Diffuser Voltage	120 V / 240 V
UV Diffuser Wattage	40 W
Safety Switch - Opened Face	Yes
Safety Switch - No UVC Barrier	Yes

UV Specifications

UV Output 253.7nm - 100hr (per lamp)	12.0 W
Intensity @ 1m (per lamp)	90 µW/cm2
UVA	No
UVB	No
UVC	Yes
Ozone emission	No
Lamp Life Expectancy	17,000 hours
Lamp Diameter	T6 (19 mm)
Lamp Geometry	`J' Shape
Lamp Type	Quartz

Filter Options for UV Diffusers

UV-Resistant 20" x 20" x 2" White MERV-9 Pleated Filter

UVFILTER-W-M9						
Minimum Efficiency Rating Value (AHRAE 52.2)	MERV 9 @ 1968 cfm					
Initial Resistance @ 492 cfm	0.021 in.w.g					
UL Certification	Yes					

UVFILTER-C-M7

UV-Resistant 20" x 20" x 2" MERV-7 Carbon Pleated Filter

UVFILTER-C-M7	
Minimum Efficiency Rating Value (AHRAE 52.2)	MERV 7 @ 1968 cfm
Initial Resistance @ 492 cfm	0.08 in.w.g
UL Certification	Yes

63

Standard Airflow Configurations

PLAY-UV Diffusers are configured as swirl diffusers at the factory. They can be easily adjusted on site but rotating each round sector manually, clockwise or counterclockwise.

PLAY can be configured as 1-Way, 2-Way, 3-Way or 4-Way diffuser, and also offer infinite custom configuration possibilities.

2-Way

Swirl

3-Way

4-Way

Dim	Free Area (sqf)	Min cfm	Max cfm
24"x24" (610mm)	0.43	100	400

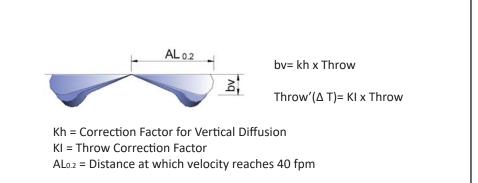
Swirl

PLAY-UV Performance Data - Swirl Diffusion

Duct Dia	Neck (fpm) Velocity	200	300	400	500	600	700	800	1000
(inches)	Velocity Pressure (H2O)	0.002	0.006	0.01	0.016	0.022	0.031	0.041	.062
	CFM				98	118	137	157	196
G	Pressure Loss (in.w.g.) - White Filter				0.014	0.019	0.025	0.032	0.048
	Pressure Loss (in.w.g.) - Carbon Filter				0.022	0.029	0.036	0.045	0.064
6	NC				< 15	< 15	< 15	< 15	16
	Throw (ft) - Coanda Effect				2-2-4	2-3-4	2-3-5	2-4-6	3-5-7
	Throw (ft) - No Ceiling				1-2-3	1-2-3	2-3-4	2-3-4	2-4-5
	CFM		105	140	175	209	244	279	349
	Pressure Loss (in.w.g.) - White Filter		0.016	0.026	0.039	0.054	0.072	0.092	0.140
8	Pressure Loss (in.w.g.) - Carbon Filter		0.025	0.038	0.053	0.071	0.091	0.114	0.167
0	NC		< 15	< 15	< 15	18	22	25	31
	Throw (ft) - Coanda Effect		2-3-4	2-3-5	3-4-6	3-5-7	3-6-9	4-6-10	5-8-12
	Throw (ft) - No Ceiling		1-2-3	2-3-4	2-3-5	2-4-6	3-4-6	3-5-7	4-6-9
	CFM	109	164	218	273	327	382	436	545
	Pressure Loss (in.w.g.) - White Filter	0.017	0.034	0.058	0.088	0.124	0.167	0.215	0.330
10	Pressure Loss (in.w.g.) - Carbon Filter	0.026	0.047	0.076	0.110	0.149	0.196	0.247	0.369
10	NC	< 15	< 15	19	25	30	34	37	43
	Throw (ft) - Coanda Effect	2-3-4	2-4-6	3-5-8	4-6-10	4-8-11	5-9-13	6-10-15	9-16-24
	Throw (ft) - No Ceiling	1-2-3	2-3-4	2-4-6	3-5-7	3-6-8	4-6-10	4-7-11	7-12-18
	CFM	157	236	314	393	471	550		
10	Pressure Loss (in.w.g.) - White Filter	0.032	0.067	0.115	0.176	0.249	0.336		
	Pressure Loss (in.w.g.) - Carbon Filter	0.045	0.086	0.139	0.206	0.284	0.375		
12	NC	< 15	21	29	35	39	44		
	Throw (ft) - Coanda Effect	2-4-6	3-6-8	4-7-11	5-9-13	6-10-16	7-12-18		
	Throw (ft) - No Ceiling	2-3-4	3-4-6	3-5-8	4-7-10	5-8-12	5-9-14		

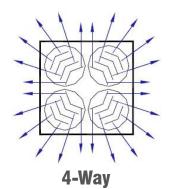
Performance Notes

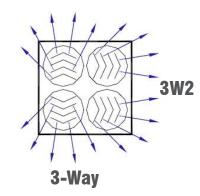
- NC Value based on 10 db room attenuation.

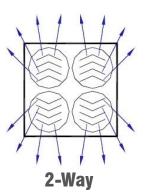

- Throw Values are based on isothermal air and terminal velocities of **<u>100 fpm, 60 fpm and 40 fpm</u>**, respectively.

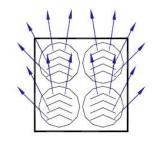
- Pressure Loss values represent the total pressure drop of the diffuser, plenum and filter assembled together.

Throw Correction Factors - Temperature


Delta T Correction Factors					
Δ T (F)	Kh	кі			
0	.039	1			
-2	.042	.965			
-4	.046	.93			
-6	.05	.91			
-8	.055	.86			
-10	.065	.84			
-12	.074	.82			
-15	.099	.78			




Induction Ratio and Delta T Ratio


	Ratios		
Throw (ft)	i	Delta T Ratio	induced room air = supplied cfm * i
4	7	0.092	induced room air = cfm mixed for given throw
6	12	0.059	
8	14	0.043	
10	18	0.034	
15	28	0.023	Delta T (Throw) = Delta T (Supply) * Delta T Ratio
20	40	0.017	Delta T (Supply) = T (Room) - T (Supply)
25	49	-	Delta T (Throw) = T (Room) - T (Throw)
30	61	-	

PLAY-UV Directional Airflow Configurations

1-Way

PLAY-UV Performance Data - Directional

					-	-	-			
Duct Dia	Neck (fpm) Velocity		200	300	400	500	600	700	800	1000
(inches)	Velo	ocity Pressure (H2O)	0.002	0.006	0.01	0.016	0.022	0.031	0.041	.062
		CFM			79	98	118	137	157	196
	Pressure Loss	(in.w.g.) - White Filter			0.010	0.014	0.019	0.025	0.032	0.048
	Pressure Loss	(in.w.g.) - Carbon Filter			0.007	0.022	0.029	0.036	0.045	0.064
6		NC			< 15	< 15	< 15	< 15	< 15	16
		4W, 3W			2-3-4	2-4-5	2-4-6	3-5-7	3-6-8	3-6-9
	Throw (ft)	3W2, 2W			3-6-10	4-7-11	4-8-12	5-9-14	6-11-16	7-13-19
		1W			5-9-13	6-10-13	6-11-16	7-12-18	8-14-21	10-17-25
		CFM	70	105	140	175	209	244	279	349
	Pressure Loss	Pressure Loss (in.w.g.) - White Filter		0.016	0.026	0.039	0.054	0.072	0.092	0.140
	Pressure Loss	Pressure Loss (in.w.g.) - Carbon Filter		0.025	0.038	0.053	0.071	0.091	0.114	0.167
8		NC	< 15	< 15	< 15	< 15	18	22	25	31
	Throw (ft)	4W, 3W	2-3-4	2-4-5	3-5-7	3-6-9	4-7-10	5-8-12	5-8-13	7-11-16
		3W2, 2W	3-6-10	4-7-11	5-9-14	7-12-18	8-14-21	9-16-24	10-17-26	13-22-34
		1W	5-9-12	6-10-14	7-12-18	9-16-24	11-18-27	12-20-30	13-22-33	17-28-42
		CFM	109	164	218	273	327	382	436	545
	Pressure Loss	(in.w.g.) - White Filter	0.017	0.034	0.058	0.088	0.124	0.167	0.215	0.330
	Pressure Loss	(in.w.g.) - Carbon Filter	0.026	0.047	0.076	0.110	0.149	0.196	0.247	0.369
10		NC	< 15	< 15	17	23	28	32	36	42
		4W, 3W	2-4-5	3-5-8	4-7-10	5-8-13	6-10-15	7-11-17	8-13-19	9-16-24
	Throw (ft)	3W2, 2W	4-7-11	6-11-16	8-14-21	10-17-26	12-20-32	14-23-35	16-26-39	19-32-48
		1W	6-10-14	8-14-21	11-18-27	13-22-33	16-26-39	18-30-45	20-34-51	25-42-63
		CFM	157	236	314	393	471	550		
	Pressure Loss	(in.w.g.) - White Filter	0.032	0.067	0.115	0.176	0.249	0.336		
	Pressure Loss	(in.w.g.) - Carbon Filter	0.045	0.086	0.139	0.206	0.284	0.375		
12		NC	< 15	21	28	34	39	43		
		4W, 3W	4-6-9	5-8-12	6-9-14	7-12-18	9-15-22	9-16-24		
	Throw (ft)	3W2, 2W	7-13-19	9-16-24	11-19-29	15-24-37	18-29-44	19-32-48		
		1W	10-16-24	12-20-30	15-24-36	19-32-48	23-38-57	25-42-63		

Performance Notes

- NC Value based on 10 db room attenuation.

- Throw Values are based on isothermal air and terminal velocities of 100 fpm, 60 fpm and 40 fpm, respectively.

- Pressure Loss values represent the total pressure drop of the diffuser, plenum and filter assembled together.

Single-Pass Germicidal Irradiation Performance - 100-300 CFM (1/2)

Bio-contaminants	100 cfm	150 cfm	200 cfm	250 cfm	300 cfm
Mycobacterium tuberculosis	>99.9999%	>99.9999%	>99.9999%	>99.9999%	>99.9999%
Legionella pneumophila	>99.9999%	>99.9999%	>99.9999%	>99.9999%	>99.9999%
Candida auris	>99.9999%	>99.9999%	>99.9999%	>99.9999%	>99.9999%
SARS-CoV-1	>99.9999%	>99.9999%	>99.9999%	>99.9999%	99.9999%
Proteus mirabilis	>99.9999%	>99.9999%	>99.9999%	99.9996%	99.9967%
Mycoplasma pneumoniae	>99.9999%	>99.9999%	>99.9999%	99.9994%	99.9952%
Listeria monocytogenes	>99.9999%	>99.9999%	99.9996%	99.9948%	99.9729%
Salmonella	>99.9999%	>99.9999%	99.9993%	99.9922%	99.9623%
Aeromonas	>99.9999%	>99.9999%	99.9981%	99.9832%	99.9285%
SARS-CoV-2	>99.9999%	99.9998%	99.9955%	99.9666%	99.8731%
Ricksettsia prowazekii	>99.9999%	99.9996%	99.9919%	99.9465%	99.8122%
Staphilococcus epidermis	>99.9999%	99.9990%	99.9829%	99.9030%	99.6916%
E. Coli	>99.9999%	99.9985%	99.9764%	99.8746%	99.6182%
Yersinia enterocolitica	>99.9999%	99.9982%	99.9729%	99.8599%	99.5811%
Coxiella burnetii	>99.9999%	99.9982%	99.9729%	99.8598%	99.5809%
Lactobacillus reuteri	>99.9999%	99.9982%	99.9729%	99.8598%	99.5809%
Vaccinia virus	>99.9999%	99.9982%	99.9721%	99.8568%	99.5734%
Smallpox	>99.9999%	99.9982%	99.9718%	99.8555%	99.5703%
Newcastle disease	>99.9999%	99.9965%	99.9549%	99.7894%	99.4119%
Acinetobacter baumanii	99.9999%	99.9892%	99.8938%	99.5824%	98.9594%
Influenza A virus	99.9997%	99.9794%	99.8282%	99.3862%	98.5655%
MRSA	99.9994%	99.9684%	99.7632%	99.2064%	98.2232%
Coxsachievirus	99.9993%	99.9636%	99.7364%	99.1355%	98.0918%
Avian Influenza virus	99.9988%	99.9480%	99.6556%	98.9292%	97.7193%
Measle virus	99.9987%	99.9445%	99.6386%	98.8872%	97.6449%
Pseudomonas aeruginosa	99.9986%	99.9429%	99.6307%	98.8680%	97.6110%
Serratia marcescens	99.9962%	99.8860%	99.3796%	98.2854%	96.6235%
Parvovirus H-1	99.9947%	99.8588%	99.2715%	98.0505%	96.2422%
Proteus vulgaris/mirabilis	99.9729%	99.5809%	98.3529%	96.2556%	93.5263%
Corynebacterium diphteriae	99.9447%	99.3265%	97.6490%	95.0227%	91.7934%
Ustilago zeae	99.9124%	99.0848%	97.0409%	94.0170%	90.4332%
Streptococcus pyogenes	99.8629%	98.7659%	96.2974%	92.8418%	88.8911%
Haemophilus influenza	99.8354%	98.6058%	95.9427%	92.2982%	88.1925%
Yeast	99.7885%	98.3526%	95.4016%	91.4869%	87.1647%
Klebsiella pneumoniae	99.7159%	97.9941%	94.6699%	90.4195%	85.8369%
Neisseria catarrhalis/meningitidis	99.6300%	97.6076%	93.9169%	89.3512%	84.5326%
Clostridium tetani	99.3448%	96.4984%	91.9053%	86.6168%	81.2875%
Vancomycin Resistant Enterococcus	98.8704%	94.9656%	89.3717%	83.3593%	77.5624%

Percentages on this table represent the minimum expected microbial deactivation for single-pass air treatment using UV-C germicidal irradiation only. The additional contribution of the air filter has not been considered.

Single-Pass Germicidal Irradiation Performance - 100-300 CFM (2/2)

Bio-contaminants	100 cfm	150 cfm	200 cfm	250 cfm	300 cfm
Burkholderia cenocepacia	98.5490%	94.0510%	87.9543%	81.6064%	75.6094%
Adenovirus	98.4594%	93.8085%	87.5879%	81.1602%	75.1174%
Enterobacter cloacae	97.8717%	92.3202%	85.4114%	78.5607%	72.2875%
Reovirus	97.2486%	90.8861%	83.4127%	76.2414%	69.8108%
Norwalk virus	96.1334%	88.5655%	80.3364%	72.7773%	66.1850%
Echovirus	90.3990%	79.0326%	69.0145%	60.8324%	54.2098%
Bacillus Anthacis	83.2521%	69.6164%	59.0759%	51.0690%	44.8787%
Cryptococcus neoformans	83.2521%	69.6164%	59.0759%	51.0690%	44.8787%
Blastomyces dermatidis	82.7981%	69.0697%	58.5248%	50.5427%	44.3850%
Histoplasma capsulatum	82.7981%	69.0697%	58.5248%	50.5427%	44.3850%
Mucor spores	82.7981%	69.0697%	58.5248%	50.5427%	44.3850%
Bacillus subtilis spores	80.9576%	66.9010%	56.3624%	48.4903%	42.4683%
Francisella Tularensis	79.3443%	65.0570%	54.5515%	46.7872%	40.8874%
Fusarium oxysporum	78.1157%	63.6848%	53.2193%	45.5431%	39.7379%
Botrytis cinerea	62.6337%	48.1215%	38.8720%	32.5484%	27.9733%
Rhizopus nigricans	60.1987%	45.8916%	36.9117%	30.8234%	26.4416%
Nocardia asteroides	58.5026%	44.3651%	35.5815%	29.6590%	25.4112%
Penicillium digitatum	53.6181%	40.0808%	31.8957%	26.4573%	22.5925%
Bacillus Cereus spores	45.3095%	33.1233%	26.0470%	21.4466%	18.2218%
Algae blue-green	42.1803%	30.5961%	23.9607%	19.6788%	16.6910%
Streptocuccus Pneumoniae	40.9296%	29.5988%	23.1427%	18.9883%	16.0946%
Penicillium chrysogenum	37.1475%	26.6250%	20.7205%	16.9520%	14.3408%
Trichophyton rubrum	35.5815%	25.4112%	19.7389%	16.1305%	13.6352%
Candida albicans	35.3052%	25.1981%	19.5669%	15.9868%	13.5119%
Mucor mucedo	34.7491%	24.7700%	19.2220%	15.6986%	13.2648%
Clostridium Difficile spores	33.7359%	23.9932%	18.5972%	15.1775%	12.8181%
Cladosporium herbarum	32.6926%	23.1975%	17.9589%	14.6458%	12.3630%
Scopulariopsis brevicaulis	30.7938%	21.7598%	16.8097%	13.6906%	11.5465%
Bacillus Anthacis spores	28.2297%	19.8390%	15.2827%	12.4255%	10.4673%
Aspergillus fumigatus spores	10.4354%	7.0839%	5.3614%	4.3126%	3.6070%
Aspergillus niger spores	7.2164%	4.8707%	3.6757%	2.9516%	2.4658%
Cladosporium wemecki	5.3108%	3.5726%	2.6916%	2.1591%	1.8026%
stachybotrys chartarum	4.2922%	2.8823%	2.1696%	1.7395%	1.4517%
Myxobolus cerebralis	2.4310%	1.6273%	1.2230%	0.9796%	0.8170%
Moraxella	2.3265%	1.5571%	1.1701%	0.9372%	0.7816%

Percentages on this table represent the minimum expected microbial deactivation for single-pass air treatment using UV-C germicidal irradiation only. The additional contribution of the air filter has not been considered.

Single-Pass Germicidal Irradiation Performance - 350-500 CFM (1/2)

Bio-contaminants	350 cfm	400 cfm	450 cfm	500 cfm
Mycobacterium tuberculosis	>99.9999%	99.9997%	99.9987%	99.9959%
Legionella pneumophila	99.9999%	99.9993%	99.9975%	99.9929%
Candida auris	99.9999%	99.9994%	99.9976%	99.9930%
SARS-CoV-1	99.9990%	99.9958%	99.9872%	99.9687%
Proteus mirabilis	99.9854%	99.9561%	99.8963%	99.7939%
Mycoplasma pneumoniae	99.9803%	99.9428%	99.8688%	99.7453%
Listeria monocytogenes	99.9124%	99.7889%	99.5814%	99.2762%
Salmonella	99.8836%	99.7293%	99.4778%	99.1168%
Aeromonas	99.7989%	99.5630%	99.2008%	98.7046%
SARS-CoV-2	99.6710%	99.3277%	98.8280%	98.1717%
Ricksettsia prowazekii	99.5395%	99.0977%	98.4776%	97.6865%
Staphilococcus epidermis	99.2956%	98.6914%	97.8813%	96.8850%
E. Coli	99.1541%	98.4639%	97.5570%	96.4590%
Yersinia enterocolitica	99.0841%	98.3533%	97.4012%	96.2564%
Coxiella burnetii	99.0838%	98.3529%	97.4006%	96.2556%
Lactobacillus reuteri	99.0838%	98.3529%	97.4006%	96.2556%
Vaccinia virus	99.0697%	98.3307%	97.3695%	96.2153%
Smallpox	99.0640%	98.3217%	97.3570%	96.1991%
Newcastle disease	98.7751%	97.8763%	96.7418%	95.4114%
Acinetobacter baumanii	98.0022%	96.7418%	95.2335%	93.5378%
Influenza A virus	97.3695%	95.8549%	94.0961%	92.1652%
MRSA	96.8399%	95.1333%	93.1908%	91.0918%
Coxsachievirus	96.6407%	94.8658%	92.8591%	90.7023%
Avian Influenza virus	96.0858%	94.1311%	91.9576%	89.6522%
Measle virus	95.9767%	93.9881%	91.7837%	89.4510%
Pseudomonas aeruginosa	95.9272%	93.9234%	91.7051%	89.3603%
Serratia marcescens	94.5212%	92.1232%	89.5534%	86.9058%
Parvovirus H-1	93.9950%	91.4650%	88.7809%	86.0376%
Proteus vulgaris/mirabilis	90.4283%	87.1659%	83.8773%	80.6495%
Corynebacterium diphteriae	88.2704%	84.6672%	81.1154%	77.6901%
Ustilago zeae	86.6226%	82.7981%	79.0824%	75.5397%
Streptococcus pyogenes	84.7944%	80.7579%	76.8910%	73.2451%
Haemophilus influenza	83.9783%	79.8572%	75.9320%	72.2479%
Yeast	82.7902%	78.5561%	74.5549%	70.8228%
Klebsiella pneumoniae	81.2751%	76.9130%	72.8291%	69.0476%
Neisseria catarrhalis/meningitidis	79.8064%	75.3360%	71.1855%	67.3675%
Clostridium tetani	76.2254%	71.5489%	67.2844%	63.4170%
Vancomycin Resistant Enterococcus	72.2225%	67.3989%	63.0753%	59.2070%

Percentages on this table represent the minimum expected microbial deactivation for single-pass air treatment using UV-C germicidal irradiation only. The additional contribution of the air filter has not been considered.

Sanuvox, a company specialized in UV-C technologies, calculated these values using the lamp's lowest efficiency, at the end of its 2-year lifespan.

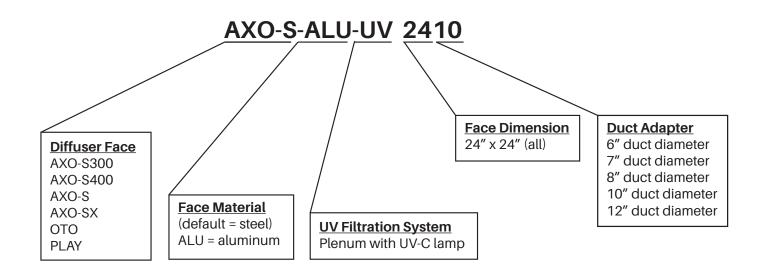
HIGH PERFORMANCE ARCHITECTURAL DIFFUSERS

Single-Pass Germicidal Irradiation Performance - 350-500 CFM (2/2)

Bio-contaminants	350 cfm	400 cfm	450 cfm	500 cfm
Burkholderia cenocepacia	70.1625%	65.2930%	60.9626%	57.1123%
Adenovirus	69.6473%	64.7692%	60.4393%	56.5952%
Enterobacter cloacae	66.7116%	61.8050%	57.4940%	53.6974%
Reovirus	64.1773%	59.2724%	54.9978%	51.2572%
Norwalk virus	60.5198%	55.6563%	51.4630%	47.8246%
Echovirus	48.8043%	44.3354%	40.5915%	37.4160%
Bacillus Anthacis	39.9830%	36.0280%	32.7726%	30.0493%
Cryptococcus neoformans	39.9830%	36.0280%	32.7726%	30.0493%
Blastomyces dermatidis	39.5226%	35.5988%	32.3718%	29.6741%
Histoplasma capsulatum	39.5226%	35.5988%	32.3718%	29.6741%
Mucor spores	39.5226%	35.5988%	32.3718%	29.6741%
Bacillus subtilis spores	37.7404%	33.9412%	30.8267%	28.2297%
Francisella Tularensis	36.2769%	32.5845%	29.5653%	27.0529%
Fusarium oxysporum	35.2162%	31.6036%	28.6551%	26.2051%
Botrytis cinerea	24.5166%	21.8156%	19.6482%	17.8711%
Rhizopus nigricans	23.1427%	20.5719%	18.5130%	16.8275%
Nocardia asteroides	22.2209%	19.7389%	17.7538%	16.1305%
Penicillium digitatum	19.7082%	17.4747%	15.6946%	14.2430%
Bacillus Cereus spores	15.8377%	14.0041%	12.5503%	11.3697%
Algae blue-green	14.4890%	12.7995%	11.4623%	10.3779%
Streptocuccus Pneumoniae	13.9646%	12.3317%	11.0403%	9.9935%
Penicillium chrysogenum	12.4255%	10.9609%	9.8049%	8.8694%
Trichophyton rubrum	11.8075%	10.4114%	9.3103%	8.4197%
Candida albicans	11.6996%	10.3155%	9.2240%	8.3413%
Mucor mucedo	11.4834%	10.1234%	9.0512%	8.1842%
Clostridium Difficile spores	11.0929%	9.7765%	8.7392%	7.9008%
Cladosporium herbarum	10.6951%	9.4235%	8.4219%	7.6126%
Scopulariopsis brevicaulis	9.9825%	8.7913%	7.8540%	7.0972%
Bacillus Anthacis spores	9.0419%	7.9580%	7.1060%	6.4187%
Aspergillus fumigatus spores	3.0998%	2.7176%	2.4194%	2.1801%
Aspergillus niger spores	2.1173%	1.8551%	1.6507%	1.4868%
Cladosporium wemecki	1.5471%	1.3550%	1.2053%	1.0855%
stachybotrys chartarum	1.2456%	1.0908%	0.9702%	0.8736%
Myxobolus cerebralis	0.7007%	0.6134%	0.5454%	0.4910%
Moraxella	0.6703%	0.5868%	0.5217%	0.4697%

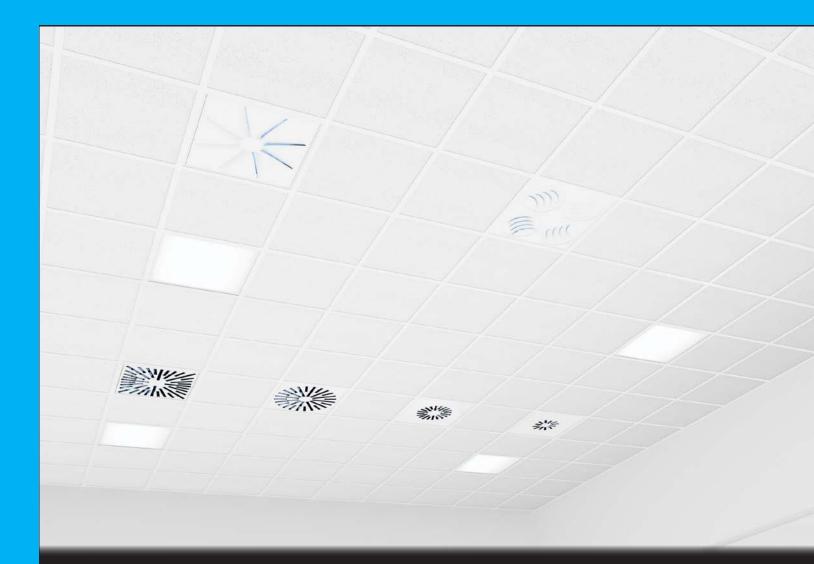
Percentages on this table represent the minimum expected microbial deactivation for single-pass air treatment using UV-C germicidal irradiation only. The additional contribution of the air filter has not been considered.

Maintenance Schedule

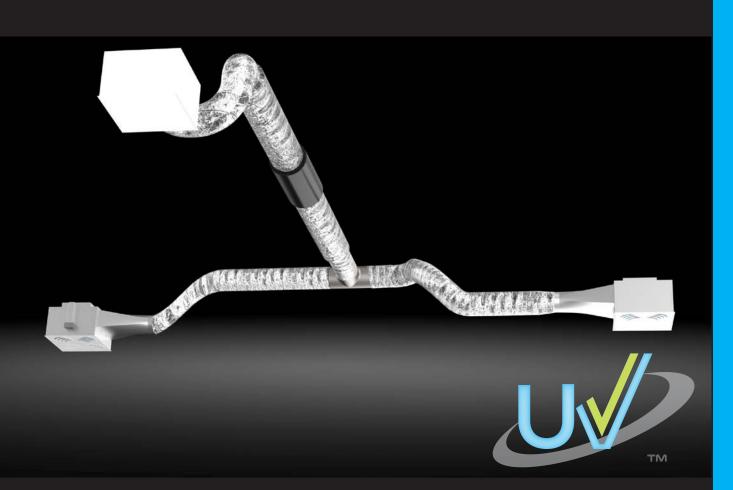

Filter Replacement: every 3 to 6 months depending on the ventilation system's filtration quality and cleanliness of the duct line.

UV Lamp Replacement: every 2 years or 17,000 hours.

How to Specify PLAY-UV


Supply and mounting of adjustable UV Diffuser PLAY-UV with four manually adjustable round diffusion sectors allowing a full 360-degree adjustment of the airflow, dimension 24x24 inches. Hinged and removable face constructed from galvanized steel face panel powder coated in white M9016. Plenum constructed of aluminum with integrated zero ozone emission UV-C lamp made of quartz, UV Barrier for the safety of room occupants, and two safety interlock switches powering off the system in the absence of the UV Barrier or when the face is open. Shall be supplied and installed with matching aluminum conical duct adapter for UV diffusers. Plenum must have earthquake tabs to secure the product to the building structure. Must be UL certified for the safety of its electrical system and UV emissions. SARS-CoV-2 single-pass germicidal irradiation performance greater than 99.9% at 458 cfm must have been demonstrated by triple redundancy tests with two control points conducted by a 3rd party laboratory with the real virus. By EffectiV HVAC Inc.

How to Order UV Diffusers


71

UV DIFFUSERS

UVdiffusers.com

UV PHANTOM

Independent Ceiling Air Purification System

Sept 5 2022

UV PHANTOM Independent Ceiling Air Purification System

Can treat up to 750 cfm with very high efficiency

Quiet

Discreet

Doesn't take any floor space

Flexible configuration and airflow to suit every room

Using two UV Diffusers UL certified for safety, with 3rd party validated performance against SARS-CoV-2

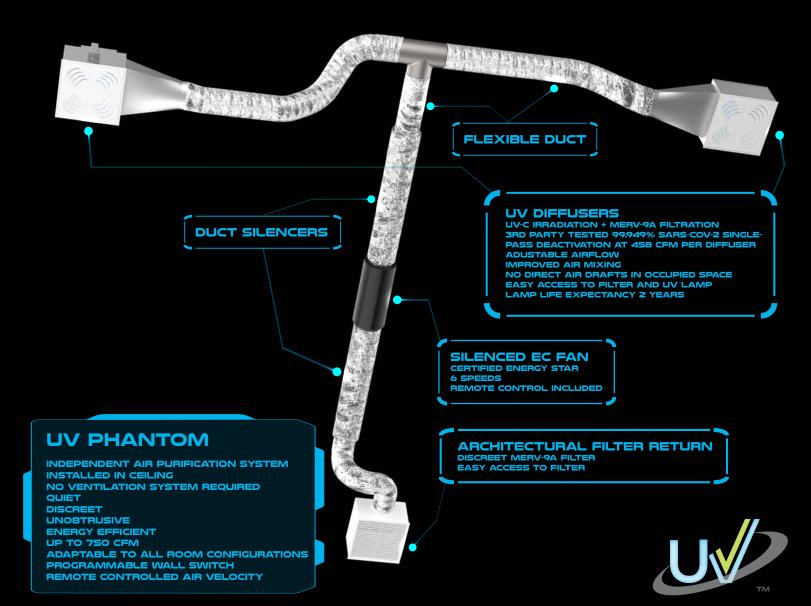
No direct air drafts causing occupants' discomfort

High discharge velocity near the ceiling provides efficient mixing of supplied air with room air

Architecturally appealing curves and design, uses FLYIN Architectural Filter Return

UV Phantom is an independent ceiling air purification system for schools, offices and other commercial buildings without ventilation systems, or in addition to existing HVAC systems to improve air quality.

It is quieter and more discreet than portable air purifiers despite its capacity of up to 750 cfm. The air is extracted through an architectural filter return, then purified and redistributed in the room with high efficiency through two AXO-S-UV or PLAY-UV diffusers. UV Diffusers have been 3rd party tested and achieved a single-pass efficiency of 99.949% against SARS-CoV-2 while supplying 458 cfm of air per diffuser. They are UL certified for Safety and Zero Ozone Emission.


The system features a remote-controlled silenced fan with 6 air velocity settings and certified Energy Star, as well as a programmable wall switch to automatically turn off the system at night. Extra silencers are also included to limit noise levels to a minimum despite the high volume of air treated.

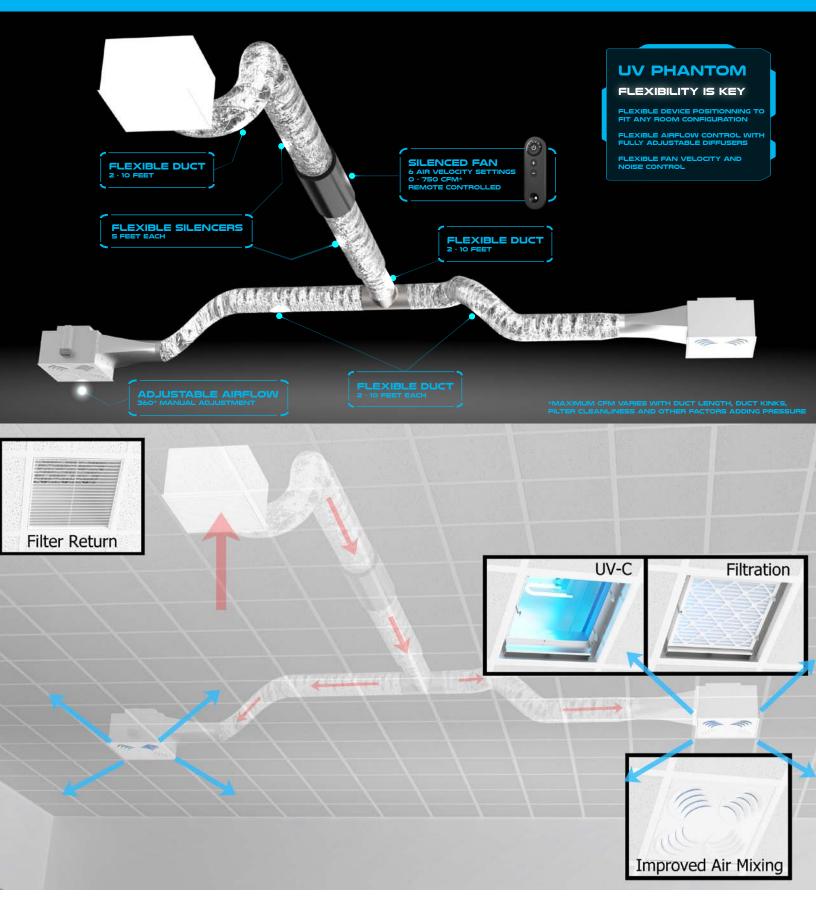
Supplying purified air through two ceiling diffusers instead of a directional jet in the occupied space significantly improves occupants' thermal comfort and reduces the risk of direct airborne transmission. The whole system is linked with flexible ducts to offer great flexibility in the positioning of products. The PLAY-UV diffusers also provide a unique 360 degree adjustment of the air jet in order to optimize air mixing in any room configuration. UV Phantom offers great flexibility to adapt to various types of rooms. UV Phantom is discrete, guiet and aesthetically appealing like no other air purification device in this capacity range. Air purification devices should not be a nuisance to occupants, and UV Phantom achieves this with very high efficiency.

QUIET

Installed in the ceiling and powered by a quiet fan, enclosed in a silencer with extra silencers on both ends, UV Phantom is the quietest commercial air purifier in the 750 cfm range. The system can treat a large volume of air with a fraction of the noise of inroom air purifiers

DISCREET

The only visible parts of the UV Phantom air purification system are the discreet architectural filter return and the two reassuring and esthetically pleasing UV Diffusers, all installed in the ceiling


UNOBTRUSIVE

UV Phantom does not take any floor space and does not obstruct the view. It also discharges and mixes the air closer to the ceiling and doesn't create unwanted air drafts in the occupied space

The use of this device is a supplement to and not a substitute for standard infection control practices; users must continue to follow all current infection control practices, including those related to the cleaning and disinfection of environmental surfaces.

HIGH PERFORMANCE ARCHITECTURAL DIFFUSERS

EFFECTIV-HVAC.COM

Safety

UV Diffusers certified UL in USA and Canada for safety in regards to electrical and UV irradiation hazards. UV-C light is contained within the diffuser in order to ensure room occupants' safety.

Interlock switches are also in place to ensure maintenance personnel's safety.

High quality lamps made of quartz do not emit any ozone nor other harmful particles. UV Diffusers are certified Zero Ozone Emission by UL

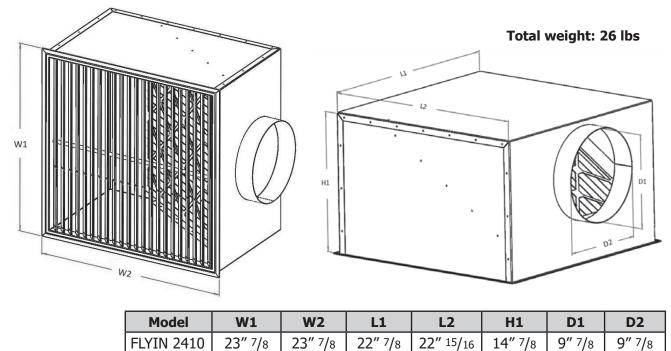
UV Diffusers are also certified by the California Air Resources Board

0.005 PPM AS TESTED BY

UL 867 UL.COM/ECV

UV Diffuser Dimensions Total weight: 34 lbs Н D1 000 10 H1 H2 D2 0000 **Dimensions** W 25 2/3" W1 23 7/8" Н 15 7/8" W H1 3 9/16" H2 **4** 3/4″ 47 1/2" L **Duct Diameter D1** D2

10"


11"

8″

W1

FLYIN Architectural Filter Return Weight and Dimensions

Electrical Specifications

System Voltage	120 V / 240 V
Total System Max Wattage	206 W
Fan Maximum Wattage	126 W
Fan Certified Energy Star	Yes
UV Diffuser Wattage	40 W
Safety Switch - Diffuser Opened Face	Yes
Safety Switch - No UVC Barrier	Yes

UV Specifications

UV Output 253.7nm - 100hr (per lamp)	12.0 W
Intensity @ 1m (per lamp)	90 µW/cm2
UVA	No
UVB	No
UVC	Yes
Ozone emission	No
Lamp Life Expectancy	17,000 hours
Lamp Diameter	T6 (19 mm)
Lamp Geometry	`J' Shape
Lamp Type	Quartz

Filter Specifications

UV-Resistant 20" x 20" x 2" White MERV-9A Pleated Filter

UVFILTER-W-M9							
Minimum Efficiency Rating Value (AHRAE 52.2)	MERV 9 @ 1968 cfm						
Initial Resistance @ 492 cfm	0.021 in.w.g						
UL Certification	Yes						

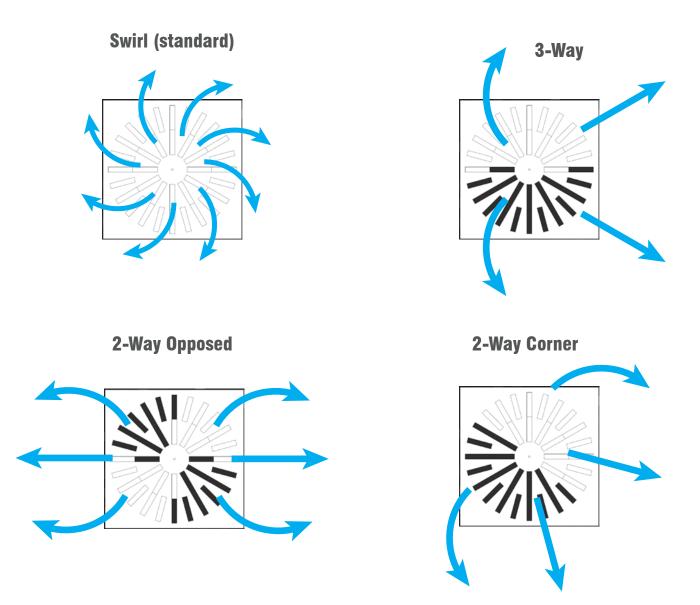
AXO-S-UV Airflow Performance Data

Free Area	CFM	CFM
(sqf)	Min	Max
0.48	230	

AXO-S-UV

Neck	Neck (fpm) Velocity	300	400	500	600	700	800	1000	1200	1400
Size (inches)	Velocity Pressure (H2O)	0.006	.010	.016	.022	.031	.041	.062	.090	.122
	CFM			98	118	137	157	196	236	275
	Pressure Loss (in.w.g.) - White Filter			0.01	0.014	0.018	0.023	0.035	0.05	0.067
6	Pressure Loss (in.w.g.) - Carbon Filter			0.018	0.024	0.029	0.036	0.051	0.069	0.089
	NC			< 15	< 15	< 15	< 15	15	19	22
	Throw (ft) - Coanda Effect			1-2-4	2-3-4	2-3-5	2-4-6	3-5-7	4-6-9	4-7-10
	Throw (ft) - No Ceiling Effect			1-2-3	1-2-3	2-3-4	2-3-4	2-4-6	3-4-7	3-5-8
	CFM	105	140	175	209	244	279	349	419	489
	Pressure Loss (in.w.g.) - White Filter	0.011	0.019	0.028	0.04	0.053	0.069	0.107	0.154	0.208
8	Pressure Loss (in.w.g.) - Carbon Filter	0.02	0.03	0.043	0.056	0.073	0.091	0.134	0.185	0.244
°	NC	< 15	< 15	< 15	16	20	22	27	31	35
	Throw (ft) - Coanda Effect	2-3-4	2-3-5	3-4-7	3-5-8	4-6-9	4-7-10	5-9-13	6-10-16	7-12-18
	Throw (ft) - No Ceiling Effect	1-2-3	2-3-4	2-3-5	2-4-6	3-5-7	3-5-8	4-7-10	5-8-12	6-9-14
	CFM	164	218	273	327	382	436	545	654	
	Pressure Loss (in.w.g.) - White Filter	0.025	0.043	0.066	0.094	0.128	0.166	0.258	0.37	0.503
10	Pressure Loss (in.w.g.) - Carbon Filter	0.038	0.06	0.088	0.12	0.157	0.198	0.297	0.415	0.554
	NC	< 15	17	22	26	28	32	37	40	
	Throw (ft) - Coanda Effect	3-4-6	3-5-8	4-7-10	5-8-12	6-10-14	7-11-16	8-14-21	10-16-25	
	Throw (ft) - No Ceiling Effect	2-3-5	2-4-6	3-5-8	4-6-9	4-7-11	5-8-12	6-10-15	7-12-19	
	CFM	236	314	393	471	550	628			
	Pressure Loss (in.w.g.) - White Filter	0.05	0.087	0.135	0.193	0.263	0.341			
12	Pressure Loss (in.w.g.) - Carbon Filter	0.069	0.111	0.165	0.228	0.302	0.385			
	NC	19	25	30	34	37	40			
	Throw (ft) - Coanda Effect	4-6-9	5-8-12	6-10-15	7-12-18	8-14-21	9-15-23			
	Throw (ft) - No Ceiling Effect	3-5-7	4-6-9	4-7-11	5-9-13	6-10-16	7-11-17			

Performance Notes


- NC Value based on 10 db room attenuation.

- Throw Values are based on isothermal air and terminal velocities of **<u>100 fpm, 60 fpm and 40 fpm</u>**, respectively.

- Pressure Loss values represent the total pressure drop of the diffuser, plenum and filter assembled together.

AXO-S-UV Adjustment and Patterns

Throw Correction Factors - Airflow Adjustments - AXO-S-UV

Adjustment	Ка		
1-Way	1.4	Throw' - Kax Throw	
2-Way	1.2	Throw' = Ka x Throw	
3-Way	1.1		

80

EFFECTIV-HVAC.COM

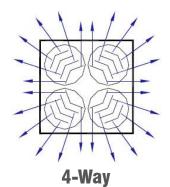
Dim	Free Area (sqf)	Min cfm	Max cfm
24"x24" (610mm)	0.43	125	400

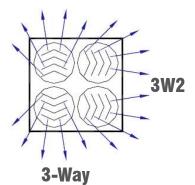
Swirl

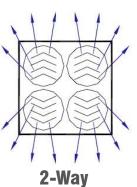
PLAY-UV Performance Data - Swirl Diffusion

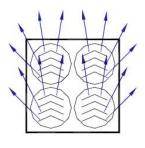
Duct Dia	Neck (fpm) Velocity	200	300	400	500	600	700	800	1000
(inches)	Velocity Pressure (H2O)	0.002	0.006	0.01	0.016	0.022	0.031	0.041	.062
	CFM				98	118	137	157	196
	Pressure Loss (in.w.g.) - White Filter				0.014	0.019	0.025	0.032	0.048
6	Pressure Loss (in.w.g.) - Carbon Filter				0.022	0.029	0.036	0.045	0.064
6	NC				< 15	< 15	< 15	< 15	16
	Throw (ft) - Coanda Effect				2-2-4	2-3-4	2-3-5	2-4-6	3-5-7
	Throw (ft) - No Ceiling				1-2-3	1-2-3	2-3-4	2-3-4	2-4-5
	CFM		105	140	175	209	244	279	349
	Pressure Loss (in.w.g.) - White Filter		0.016	0.026	0.039	0.054	0.072	0.092	0.140
8	Pressure Loss (in.w.g.) - Carbon Filter		0.025	0.038	0.053	0.071	0.091	0.114	0.167
°	NC		< 15	< 15	< 15	18	22	25	31
	Throw (ft) - Coanda Effect		2-3-4	2-3-5	3-4-6	3-5-7	3-6-9	4-6-10	5-8-12
	Throw (ft) - No Ceiling		1-2-3	2-3-4	2-3-5	2-4-6	3-4-6	3-5-7	4-6-9
	CFM	109	164	218	273	327	382	436	545
	Pressure Loss (in.w.g.) - White Filter	0.017	0.034	0.058	0.088	0.124	0.167	0.215	0.330
10	Pressure Loss (in.w.g.) - Carbon Filter	0.026	0.047	0.076	0.110	0.149	0.196	0.247	0.369
10	NC	< 15	< 15	19	25	30	34	37	43
	Throw (ft) - Coanda Effect	2-3-4	2-4-6	3-5-8	4-6-10	4-8-11	5-9-13	6-10-15	9-16-24
	Throw (ft) - No Ceiling	1-2-3	2-3-4	2-4-6	3-5-7	3-6-8	4-6-10	4-7-11	7-12-18
	CFM	157	236	314	393	471	550		
	Pressure Loss (in.w.g.) - White Filter	0.032	0.067	0.115	0.176	0.249	0.336		
12	Pressure Loss (in.w.g.) - Carbon Filter	0.045	0.086	0.139	0.206	0.284	0.375		
12	NC	< 15	21	29	35	39	44		
	Throw (ft) - Coanda Effect	2-4-6	3-6-8	4-7-11	5-9-13	6-10-16	7-12-18		
	Throw (ft) - No Ceiling	2-3-4	3-4-6	3-5-8	4-7-10	5-8-12	5-9-14		

Performance Notes


- NC Value based on 10 db room attenuation.


- Throw Values are based on isothermal air and terminal velocities of **<u>100 fpm, 60 fpm and 40 fpm</u>**, respectively.


- Pressure Loss values represent the total pressure drop of the diffuser, plenum and filter assembled together.



PLAY-UV Directional Airflow Configurations

1-Way

	1	Neck (fpm) Velocity	200	300	400	500	600	700	800	1000
Duct Dia (inches)	Velo	ocity Pressure (H2O)	0.002	0.006	0.01	0.016	0.022	0.031	0.041	.062
		CFM			79	98	118	137	157	196
	Pressure Loss	(in.w.g.) - White Filter			0.010	0.014	0.019	0.025	0.032	0.048
		(in.w.g.) - Carbon Filter			0.007	0.022	0.029	0.036	0.045	0.064
6		NC			< 15	< 15	< 15	< 15	< 15	16
-		4W, 3W			2-3-4	2-4-5	2-4-6	3-5-7	3-6-8	3-6-9
	Throw (ft)	3W2, 2W			3-6-10	4-7-11	4-8-12	5-9-14	6-11-16	7-13-19
		1W			5-9-13	6-10-13	6-11-16	7-12-18	8-14-21	10-17-25
		CFM	70	105	140	175	209	244	279	349
	Pressure Loss	(in.w.g.) - White Filter	0.008	0.016	0.026	0.039	0.054	0.072	0.092	0.140
	Pressure Loss (in.w.g.) - Carbon Filter		0.014	0.025	0.038	0.053	0.071	0.091	0.114	0.167
8		NC	< 15	< 15	< 15	< 15	18	22	25	31
•	Throw (ft)	4W, 3W	2-3-4	2-4-5	3-5-7	3-6-9	4-7-10	5-8-12	5-8-13	7-11-16
		3W2, 2W	3-6-10	4-7-11	5-9-14	7-12-18	8-14-21	9-16-24	10-17-26	13-22-34
		1W	5-9-12	6-10-14	7-12-18	9-16-24	11-18-27	12-20-30	13-22-33	17-28-42
		CFM		164	218	273	327	382	436	545
	Pressure Loss	Pressure Loss (in.w.g.) - White Filter		0.034	0.058	0.088	0.124	0.167	0.215	0.330
	Pressure Loss	(in.w.g.) - Carbon Filter	0.026	0.047	0.076	0.110	0.149	0.196	0.247	0.369
10		NC	< 15	< 15	17	23	28	32	36	42
		4W, 3W	2-4-5	3-5-8	4-7-10	5-8-13	6-10-15	7-11-17	8-13-19	9-16-24
	Throw (ft)	3W2, 2W	4-7-11	6-11-16	8-14-21	10-17-26	12-20-32	14-23-35	16-26-39	19-32-48
		1W	6-10-14	8-14-21	11-18-27	13-22-33	16-26-39	18-30-45	20-34-51	25-42-63
		CFM	157	236	314	393	471	550		
	Pressure Loss	(in.w.g.) - White Filter	0.032	0.067	0.115	0.176	0.249	0.336		
	Pressure Loss	(in.w.g.) - Carbon Filter	0.045	0.086	0.139	0.206	0.284	0.375		
12		NC	< 15	21	28	34	39	43		
		4W, 3W	4-6-9	5-8-12	6-9-14	7-12-18	9-15-22	9-16-24		
	Throw (ft)	3W2, 2W	7-13-19	9-16-24	11-19-29	15-24-37	18-29-44	19-32-48		
		1W	10-16-24	12-20-30	15-24-36	19-32-48	23-38-57	25-42-63		

Performance Notes

- NC Value based on 10 db room attenuation.

- Throw Values are based on isothermal air and terminal velocities of 100 fpm, 60 fpm and 40 fpm, respectively.

- Pressure Loss values represent the total pressure drop of the diffuser, plenum and filter assembled together.

Single-Pass Germicidal Irradiation Performance - 100-300 CFM (1/2)

Bio-contaminants	100 cfm	150 cfm	200 cfm	250 cfm	300 cfm
Mycobacterium tuberculosis	>99.9999%	>99.9999%	>99.9999%	>99.9999%	>99.9999%
Legionella pneumophila	>99.9999%	>99.9999%	>99.9999%	>99.9999%	>99.9999%
Candida auris	>99.9999%	>99.9999%	>99.9999%	>99.9999%	>99.9999%
SARS-CoV-1	>99.9999%	>99.9999%	>99.9999%	>99.9999%	99.9999%
Proteus mirabilis	>99.9999%	>99.9999%	>99.9999%	99.9996%	99.9967%
Mycoplasma pneumoniae	>99.9999%	>99.9999%	>99.9999%	99.9994%	99.9952%
Listeria monocytogenes	>99.9999%	>99.9999%	99.9996%	99.9948%	99.9729%
Salmonella	>99.9999%	>99.9999%	99.9993%	99.9922%	99.9623%
Aeromonas	>99.9999%	>99.9999%	99.9981%	99.9832%	99.9285%
SARS-CoV-2	>99.9999%	99.9998%	99.9955%	99.9666%	99.8731%
Ricksettsia prowazekii	>99.9999%	99.9996%	99.9919%	99.9465%	99.8122%
Staphilococcus epidermis	>99.9999%	99.9990%	99.9829%	99.9030%	99.6916%
E. Coli	>99.9999%	99.9985%	99.9764%	99.8746%	99.6182%
Yersinia enterocolitica	>99.9999%	99.9982%	99.9729%	99.8599%	99.5811%
Coxiella burnetii	>99.9999%	99.9982%	99.9729%	99.8598%	99.5809%
Lactobacillus reuteri	>99.9999%	99.9982%	99.9729%	99.8598%	99.5809%
Vaccinia virus	>99.9999%	99.9982%	99.9721%	99.8568%	99.5734%
Smallpox	>99.9999%	99.9982%	99.9718%	99.8555%	99.5703%
Newcastle disease	>99.9999%	99.9965%	99.9549%	99.7894%	99.4119%
Acinetobacter baumanii	99.9999%	99.9892%	99.8938%	99.5824%	98.9594%
Influenza A virus	99.9997%	99.9794%	99.8282%	99.3862%	98.5655%
MRSA	99.9994%	99.9684%	99.7632%	99.2064%	98.2232%
Coxsachievirus	99.9993%	99.9636%	99.7364%	99.1355%	98.0918%
Avian Influenza virus	99.9988%	99.9480%	99.6556%	98.9292%	97.7193%
Measle virus	99.9987%	99.9445%	99.6386%	98.8872%	97.6449%
Pseudomonas aeruginosa	99.9986%	99.9429%	99.6307%	98.8680%	97.6110%
Serratia marcescens	99.9962%	99.8860%	99.3796%	98.2854%	96.6235%
Parvovirus H-1	99.9947%	99.8588%	99.2715%	98.0505%	96.2422%
Proteus vulgaris/mirabilis	99.9729%	99.5809%	98.3529%	96.2556%	93.5263%
Corynebacterium diphteriae	99.9447%	99.3265%	97.6490%	95.0227%	91.7934%
Ustilago zeae	99.9124%	99.0848%	97.0409%	94.0170%	90.4332%
Streptococcus pyogenes	99.8629%	98.7659%	96.2974%	92.8418%	88.8911%
Haemophilus influenza	99.8354%	98.6058%	95.9427%	92.2982%	88.1925%
Yeast	99.7885%	98.3526%	95.4016%	91.4869%	87.1647%
Klebsiella pneumoniae	99.7159%	97.9941%	94.6699%	90.4195%	85.8369%
Neisseria catarrhalis/meningitidis	99.6300%	97.6076%	93.9169%	89.3512%	84.5326%
Clostridium tetani	99.3448%	96.4984%	91.9053%	86.6168%	81.2875%
Vancomycin Resistant Enterococcus	98.8704%	94.9656%	89.3717%	83.3593%	77.5624%

Percentages on this table represent the minimum expected microbial deactivation for single-pass air treatment using UV-C germicidal irradiation only. The additional contribution of the air filters has not been considered.

Sanuvox, a company specialized in UV-C technologies, calculated these values using the lamp's lowest efficiency, at the end of its 2-year lifespan.

Single-Pass Germicidal Irradiation Performance - 100-300 CFM (2/2)

Bio-contaminants	100 cfm	150 cfm	200 cfm	250 cfm	300 cfm
Burkholderia cenocepacia	98.5490%	94.0510%	87.9543%	81.6064%	75.6094%
Adenovirus	98.4594%	93.8085%	87.5879%	81.1602%	75.1174%
Enterobacter cloacae	97.8717%	92.3202%	85.4114%	78.5607%	72.2875%
Reovirus	97.2486%	90.8861%	83.4127%	76.2414%	69.8108%
Norwalk virus	96.1334%	88.5655%	80.3364%	72.7773%	66.1850%
Echovirus	90.3990%	79.0326%	69.0145%	60.8324%	54.2098%
Bacillus Anthacis	83.2521%	69.6164%	59.0759%	51.0690%	44.8787%
Cryptococcus neoformans	83.2521%	69.6164%	59.0759%	51.0690%	44.8787%
Blastomyces dermatidis	82.7981%	69.0697%	58.5248%	50.5427%	44.3850%
Histoplasma capsulatum	82.7981%	69.0697%	58.5248%	50.5427%	44.3850%
Mucor spores	82.7981%	69.0697%	58.5248%	50.5427%	44.3850%
Bacillus subtilis spores	80.9576%	66.9010%	56.3624%	48.4903%	42.4683%
Francisella Tularensis	79.3443%	65.0570%	54.5515%	46.7872%	40.8874%
Fusarium oxysporum	78.1157%	63.6848%	53.2193%	45.5431%	39.7379%
Botrytis cinerea	62.6337%	48.1215%	38.8720%	32.5484%	27.9733%
Rhizopus nigricans	60.1987%	45.8916%	36.9117%	30.8234%	26.4416%
Nocardia asteroides	58.5026%	44.3651%	35.5815%	29.6590%	25.4112%
Penicillium digitatum	53.6181%	40.0808%	31.8957%	26.4573%	22.5925%
Bacillus Cereus spores	45.3095%	33.1233%	26.0470%	21.4466%	18.2218%
Algae blue-green	42.1803%	30.5961%	23.9607%	19.6788%	16.6910%
Streptocuccus Pneumoniae	40.9296%	29.5988%	23.1427%	18.9883%	16.0946%
Penicillium chrysogenum	37.1475%	26.6250%	20.7205%	16.9520%	14.3408%
Trichophyton rubrum	35.5815%	25.4112%	19.7389%	16.1305%	13.6352%
Candida albicans	35.3052%	25.1981%	19.5669%	15.9868%	13.5119%
Mucor mucedo	34.7491%	24.7700%	19.2220%	15.6986%	13.2648%
Clostridium Difficile spores	33.7359%	23.9932%	18.5972%	15.1775%	12.8181%
Cladosporium herbarum	32.6926%	23.1975%	17.9589%	14.6458%	12.3630%
Scopulariopsis brevicaulis	30.7938%	21.7598%	16.8097%	13.6906%	11.5465%
Bacillus Anthacis spores	28.2297%	19.8390%	15.2827%	12.4255%	10.4673%
Aspergillus fumigatus spores	10.4354%	7.0839%	5.3614%	4.3126%	3.6070%
Aspergillus niger spores	7.2164%	4.8707%	3.6757%	2.9516%	2.4658%
Cladosporium wemecki	5.3108%	3.5726%	2.6916%	2.1591%	1.8026%
stachybotrys chartarum	4.2922%	2.8823%	2.1696%	1.7395%	1.4517%
Myxobolus cerebralis	2.4310%	1.6273%	1.2230%	0.9796%	0.8170%
Moraxella	2.3265%	1.5571%	1.1701%	0.9372%	0.7816%

Percentages on this table represent the minimum expected microbial deactivation for single-pass air treatment using UV-C germicidal irradiation only. The additional contribution of the air filters has not been considered.

Sanuvox, a company specialized in UV-C technologies, calculated these values using the lamp's lowest efficiency, at the end of its 2-year lifespan.

Single-Pass Germicidal Irradiation Performance - 350-500 CFM (1/2)

Bio-contaminants	350 cfm	400 cfm	450 cfm	500 cfm
Mycobacterium tuberculosis	>99.9999%	99.9997%	99.9987%	99.9959%
Legionella pneumophila	99.9999%	99.9993%	99.9975%	99.9929%
Candida auris	99.9999%	99.9994%	99.9976%	99.9930%
SARS-CoV-1	99.9990%	99.9958%	99.9872%	99.9687%
Proteus mirabilis	99.9854%	99.9561%	99.8963%	99.7939%
Mycoplasma pneumoniae	99.9803%	99.9428%	99.8688%	99.7453%
Listeria monocytogenes	99.9124%	99.7889%	99.5814%	99.2762%
Salmonella	99.8836%	99.7293%	99.4778%	99.1168%
Aeromonas	99.7989%	99.5630%	99.2008%	98.7046%
SARS-CoV-2	99.6710%	99.3277%	98.8280%	98.1717%
Ricksettsia prowazekii	99.5395%	99.0977%	98.4776%	97.6865%
Staphilococcus epidermis	99.2956%	98.6914%	97.8813%	96.8850%
E. Coli	99.1541%	98.4639%	97.5570%	96.4590%
Yersinia enterocolitica	99.0841%	98.3533%	97.4012%	96.2564%
Coxiella burnetii	99.0838%	98.3529%	97.4006%	96.2556%
Lactobacillus reuteri	99.0838%	98.3529%	97.4006%	96.2556%
Vaccinia virus	99.0697%	98.3307%	97.3695%	96.2153%
Smallpox	99.0640%	98.3217%	97.3570%	96.1991%
Newcastle disease	98.7751%	97.8763%	96.7418%	95.4114%
Acinetobacter baumanii	98.0022%	96.7418%	95.2335%	93.5378%
Influenza A virus	97.3695%	95.8549%	94.0961%	92.1652%
MRSA	96.8399%	95.1333%	93.1908%	91.0918%
Coxsachievirus	96.6407%	94.8658%	92.8591%	90.7023%
Avian Influenza virus	96.0858%	94.1311%	91.9576%	89.6522%
Measle virus	95.9767%	93.9881%	91.7837%	89.4510%
Pseudomonas aeruginosa	95.9272%	93.9234%	91.7051%	89.3603%
Serratia marcescens	94.5212%	92.1232%	89.5534%	86.9058%
Parvovirus H-1	93.9950%	91.4650%	88.7809%	86.0376%
Proteus vulgaris/mirabilis	90.4283%	87.1659%	83.8773%	80.6495%
Corynebacterium diphteriae	88.2704%	84.6672%	81.1154%	77.6901%
Ustilago zeae	86.6226%	82.7981%	79.0824%	75.5397%
Streptococcus pyogenes	84.7944%	80.7579%	76.8910%	73.2451%
Haemophilus influenza	83.9783%	79.8572%	75.9320%	72.2479%
Yeast	82.7902%	78.5561%	74.5549%	70.8228%
Klebsiella pneumoniae	81.2751%	76.9130%	72.8291%	69.0476%
Neisseria catarrhalis/meningitidis	79.8064%	75.3360%	71.1855%	67.3675%
Clostridium tetani	76.2254%	71.5489%	67.2844%	63.4170%
Vancomycin Resistant Enterococcus	72.2225%	67.3989%	63.0753%	59.2070%

Percentages on this table represent the minimum expected microbial deactivation for single-pass air treatment using UV-C germicidal irradiation only. The additional contribution of the air filters has not been considered.

Sanuvox, a company specialized in UV-C technologies, calculated these values using the lamp's lowest efficiency, at the end of its 2-year lifespan.

HIGH PERFORMANCE ARCHITECTURAL DIFFUSERS

Single-Pass Germicidal Irradiation Performance - 350-500 CFM (2/2)

Bio-contaminants	350 cfm	400 cfm	450 cfm	500 cfm
Burkholderia cenocepacia	70.1625%	65.2930%	60.9626%	57.1123%
Adenovirus	69.6473%	64.7692%	60.4393%	56.5952%
Enterobacter cloacae	66.7116%	61.8050%	57.4940%	53.6974%
Reovirus	64.1773%	59.2724%	54.9978%	51.2572%
Norwalk virus	60.5198%	55.6563%	51.4630%	47.8246%
Echovirus	48.8043%	44.3354%	40.5915%	37.4160%
Bacillus Anthacis	39.9830%	36.0280%	32.7726%	30.0493%
Cryptococcus neoformans	39.9830%	36.0280%	32.7726%	30.0493%
Blastomyces dermatidis	39.5226%	35.5988%	32.3718%	29.6741%
Histoplasma capsulatum	39.5226%	35.5988%	32.3718%	29.6741%
Mucor spores	39.5226%	35.5988%	32.3718%	29.6741%
Bacillus subtilis spores	37.7404%	33.9412%	30.8267%	28.2297%
Francisella Tularensis	36.2769%	32.5845%	29.5653%	27.0529%
Fusarium oxysporum	35.2162%	31.6036%	28.6551%	26.2051%
Botrytis cinerea	24.5166%	21.8156%	19.6482%	17.8711%
Rhizopus nigricans	23.1427%	20.5719%	18.5130%	16.8275%
Nocardia asteroides	22.2209%	19.7389%	17.7538%	16.1305%
Penicillium digitatum	19.7082%	17.4747%	15.6946%	14.2430%
Bacillus Cereus spores	15.8377%	14.0041%	12.5503%	11.3697%
Algae blue-green	14.4890%	12.7995%	11.4623%	10.3779%
Streptocuccus Pneumoniae	13.9646%	12.3317%	11.0403%	9.9935%
Penicillium chrysogenum	12.4255%	10.9609%	9.8049%	8.8694%
Trichophyton rubrum	11.8075%	10.4114%	9.3103%	8.4197%
Candida albicans	11.6996%	10.3155%	9.2240%	8.3413%
Mucor mucedo	11.4834%	10.1234%	9.0512%	8.1842%
Clostridium Difficile spores	11.0929%	9.7765%	8.7392%	7.9008%
Cladosporium herbarum	10.6951%	9.4235%	8.4219%	7.6126%
Scopulariopsis brevicaulis	9.9825%	8.7913%	7.8540%	7.0972%
Bacillus Anthacis spores	9.0419%	7.9580%	7.1060%	6.4187%
Aspergillus fumigatus spores	3.0998%	2.7176%	2.4194%	2.1801%
Aspergillus niger spores	2.1173%	1.8551%	1.6507%	1.4868%
Cladosporium wemecki	1.5471%	1.3550%	1.2053%	1.0855%
stachybotrys chartarum	1.2456%	1.0908%	0.9702%	0.8736%
Myxobolus cerebralis	0.7007%	0.6134%	0.5454%	0.4910%
Moraxella	0.6703%	0.5868%	0.5217%	0.4697%

Percentages on this table represent the minimum expected microbial deactivation for single-pass air treatment using UV-C germicidal irradiation only. The additional contribution of the air filters has not been considered.

Sanuvox, a company specialized in UV-C technologies, calculated these values using the lamp's lowest efficiency, at the end of its 2-year lifespan.

Maintenance Schedule

Filter Replacement: every 3 to 6 months depending on the ventilation system's filtration quality and cleanliness of the duct line.

UV Lamp Replacement: every 2 years or 17,000 hours.

How to Specify UV-PHANTOM

Supply and mounting of independent ceiling mounted air purification system UV PHANTOM. With two AXO-S-UV or PLAY-UV diffusers UL certified for Safety and Zero Ozone Emissions, one FLYIN architectural filter return grille, one silenced EC fan certified Energy Star, two duct silencers and all the necessary ducts and fittings. UV Diffusers and Filter Return must have hinged and removable face to allow easy access to filters and UV Lamps from the room. Visible products are constructed from galvanized steel face panel powder coated in white M9016. All products must have earthquake tabs to secure the product to the building structure. UV Diffusers' SARS-CoV-2 single-pass germicidal irradiation performance greater than 99.9% at 458 cfm must have been demonstrated by triple redundancy tests with two control points conducted by a 3rd party laboratory with the real virus. By EffectiV HVAC Inc.

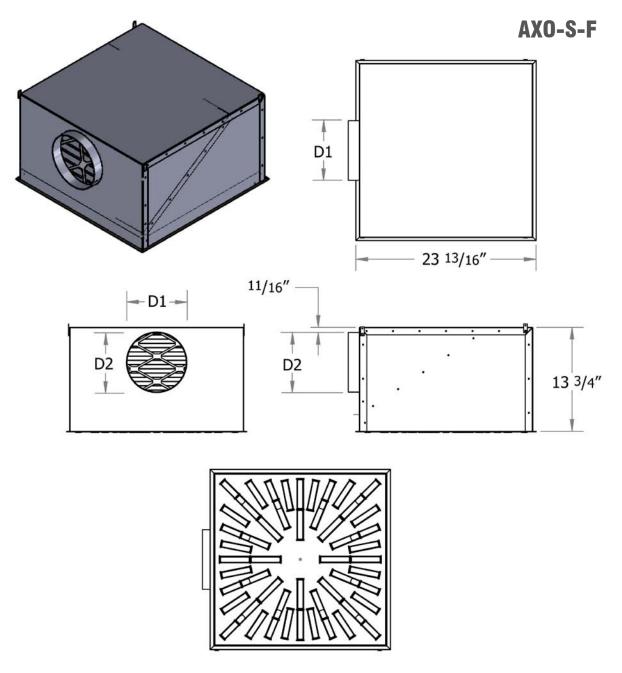
UV PHANTOM

UVdiffusers.com/UV-Phantom

SUBMITTAL DRAWINGS

AIR PURIFICATION

AXO-F


REV 1 - PAGE 1/2

AXO-F Series High Induction Swirl Filter Diffusers

Air Pattern | Adjustable high induction swirl pattern

Material | Powder coated stamped heavy gauge steel or aluminum face with black or white ABS vanes, galvanized steel plenum and 20" x 20" x 2" pleated filter

AXO-F

REV 1 - PAGE 2/2

S300

Select Model				
Model	Material	CFM Min	CFM Max	
AXO-S300-F	Steel	50	130	
AXO-S400-F	Steel	100	250	
AXO-S-F	Steel	230	500	
AXO-SX-F	Steel	300	550	
AXO-S300-ALU-F	Aluminum	50	130	
AXO-S400-ALU-F	Aluminum	100	250	
AXO-S-ALU-F	Aluminum	230	500	
AXO-SX-ALU-F	Aluminum	300	550	

Select Dimension				
Dimension Face		D1	D2	
2406	23 7/8" x 23 7/8"	5 7/8″	5 7/8″	
2407	23 7/8" x 23 7/8"	6 7/8″	6 7/8″	
2408	23 ⁷ /8" x 23 ⁷ /8"	7 7/8″	7 7/8″	
2410	23 7/8" x 23 7/8"	9 7/8″	9 7/8″	
2412	23 7/8" x 23 7/8"	16″	8″	

	Filter		
UVFILTER-W-M9 2" MERV-9A White Pleated Filter			
	UVFILTER-C-M7	2" MERV-7 Carbon Pleated Filter	

Select Finish		
	Powder Coated White RAL9016	
	Other RAL :	

いて、 S400 「「「「」」、 S 「「」」、「」、 S SX

Project:

Engineer:

Architect:

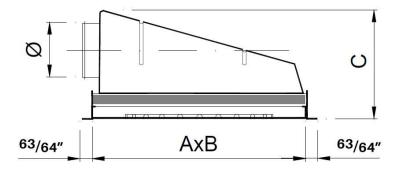
Contractor:

AXO-HEPA

REV O

AXO-HEPA Series HEPA Filter Terminal High Induction Swirl Diffuser

Material | Powder coated stamped heavy gauge steel face with plastic vanes, polysterene plenum box and H14 HEPA filter


Air Pattern | High induction swirl pattern, directional, or downward vertical

Ceiling Types | Closed

EFFECT

AXO-HEPA (UFA-AXO)

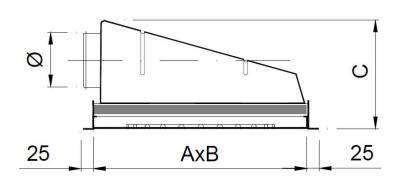
	Select Model				
\checkmark	✓ Model A B C Ø				Ø
	AXO-HEPA 330	12 ⁶³ /64″	12 ⁶³ /64"	13 ³⁷ /64"	6 ³ /4″
	AXO-HEPA 482	18 ³¹ /32″	18 ³¹ /32"	13 ³⁷ /64"	6 ³ /4″
	AXO-HEPA 538	21 3/16″	21 3/16"	14 3/8″	7 3/4″
	AXO-HEPA 635	25″	25″	14 3/8″	7 3/4″

Select Finish		
Powder Coated White RAL9010		
	Anodised silver matte (AA)	
	Other RAL:	

Project:		
Engineer:		
Architect:		
Contractor:		

REV O

AXO-HEPA Series HEPA Filter Terminal High Induction Swirl Diffuser


Material | Powder coated stamped heavy gauge steel face with plastic vanes, polysterene plenum box and H14 HEPA filter

Air Pattern | High induction swirl pattern, directional, or downward vertical

Ceiling Types | Closed

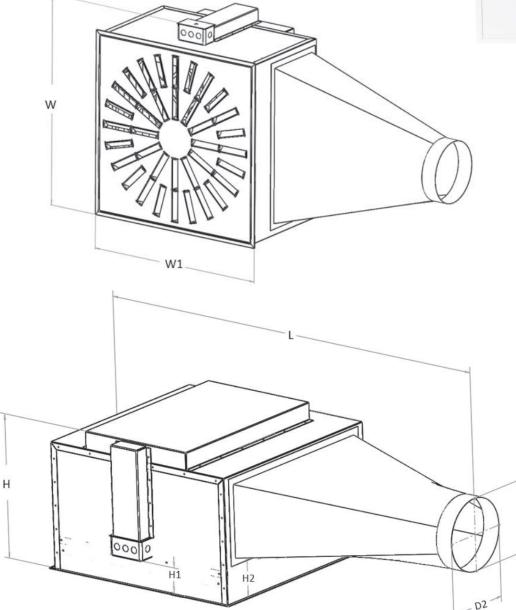
AXO-HEPA (UFA-AXO)

	Select Model				
\checkmark	Model	Α	В	С	Ø
	AXO-HEPA 330	330	330	345	173
	AXO-HEPA 482	482	482	345	173
	AXO-HEPA 538	538	538	190	198
	AXO-HEPA 635	635	635	365	198

Select Finish		
	Powder Coated White RAL9010	
	Anodised silver matte (AA)	
	Other RAL:	

8	
Project:	
Engineer:	
Architect:	
Contractor:	

AXO-UV


REV 3 - PAGE 1/2

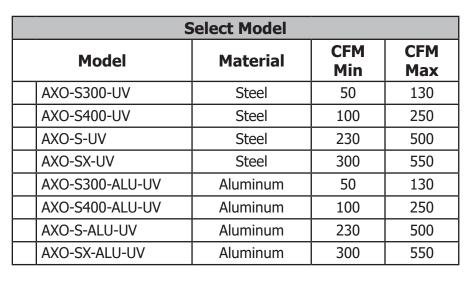


AXO-UV Series High Induction Swirl UV Diffusers

Material | Powder coated stamped heavy gauge steel or aluminum face with black ABS vanes, aluminum plenum, UVC lamp and 2" UV-resistant pleated filter

Air Pattern | Adjustable high induction swirl pattern

AXO-UV



Dim	Dimensions		
W	25 2/3″		
W1	23 7/8″		
Н	15 7/8″		
H1	3 9/16″		
H2	4 3/4″		
L	47 1/2″		

D1

AXO-UV

REV 3 - PAGE 2/2

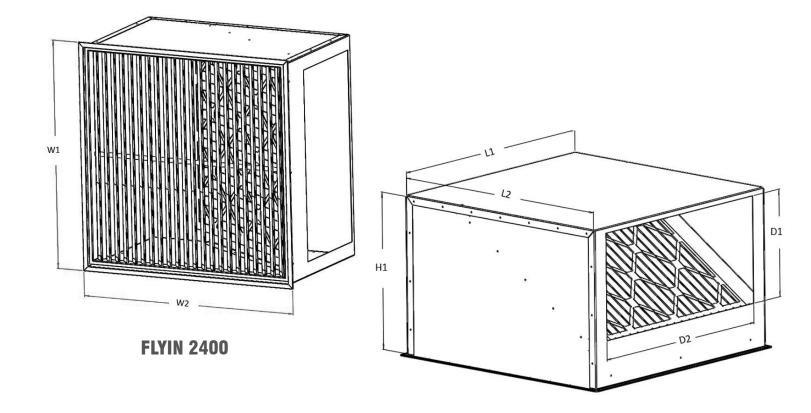
Select Dimension				
Dimension Face D1 D2				
2406	23 7/8" x 23 7/8"	5 7/8″	5 7/8″	
2407	23 7/8" x 23 7/8"	6 7/8″	6 7/8″	
2408	23 ⁷ /8" x 23 ⁷ /8"	7 7/8″	7 7/8″	
2410	23 7/8" x 23 7/8"	11″	8″	
2412	23 7/8" x 23 7/8"	16″	8″	

Filter				
	UVFILTER-W-M9 2" MERV-9 UV Resistant White Pleated Filter			
	UVFILTER-C-M7	2" MERV-7 UV Resistant Carbon Pleated Filter		

Select Finish			
	Powder Coated White RAL9016		
	Other RAL :		

S300

Project: Engineer: Architect: Contractor:


EFFECTIV-HVAC.COM

EFFECT

FLYIN

REV 1 - PAGE 2/2

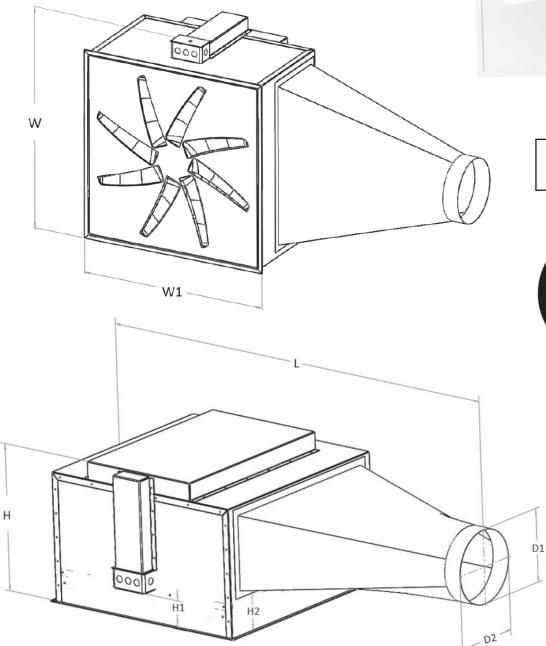
	Select Model							
\checkmark	Model W1 W2 L1 L2 H1 D1 D2							
	FLYIN 2400*	23″ 7/8	23″ ⁷ /8	22″ ⁷ /8	22″ ¹⁵ /16	14″ 7/8	10" (1)	20" (1)

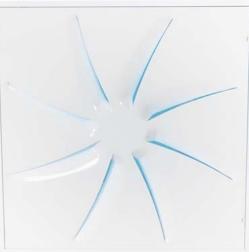
*FLYIN 2400 for non ducted ceiling plenum applications has no collar and a rectangular opening

Select Options			
	R6 Thermal Insulation		
Select Interior Finish			
	Powder Coated White RAL9016		
	Other RAL:		
Select Face Finish			
	Powder Coated White RAL9016		
	Other RAL:		

Project:		
Engineer:		
Architect:		
Contractor:		

ΟΤΟ-UV


REV 3 - PAGE 1/2



OTO-UV Series Architectural Swirl UV Diffuser

Material | Powder coated stamped heavy gauge steel face, aluminum plenum, UVC lamp and 2" UV-resistant pleated filter

Air Pattern | Fix high induction swirl pattern

OTO-UV

Dimensions			
W 25 2/3"			
W1 23 7/8″			
Н	15 7/8″		
H1	3 9/16″		
H2	4 3/4″		
L	47 ¹ /2″		

ΟΤΟ-UV

REV 3 - PAGE 2/2

Select Model					
Model D1 D2					
OTO-UV 2406	5 7/8″	5 7/8″			
OTO-UV 2407	6 7/8″	6 7/8″			
OTO-UV 2408	7 7/8″	7 7/8″			
OTO-UV 2410	11″	8″			
OTO-UV 2412	16″	8″			

Filter			
	UVFILTER-W-M9 2" MERV-9 UV Resistant White Pleated Filter		
	UVFILTER-C-M7	2" MERV-7 UV Resistant Carbon Pleated Filter	

Select Finish				
	Powder Coated White RAL9016			
	Other RAL :			

Project:

Engineer:

Architect:

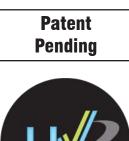
Contractor:

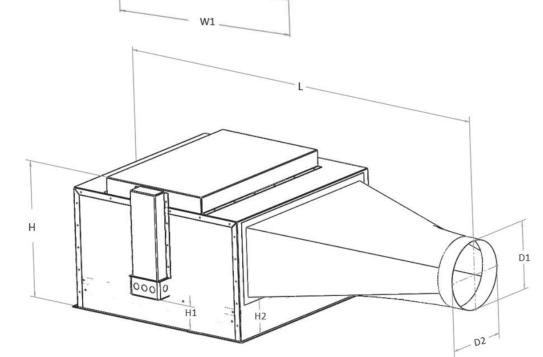
PLAY-UV

W

REV 3 - PAGE 1/2

PLAY-UV Series Adjustable UV Diffuser


Material | Powder coated stamped heavy gauge steel face, aluminum plenum, UVC lamp and 2" UV-resistant pleated filter


0000

Air Pattern | Adjustable pattern, high discharge velocity

PLAY-UV

Dimensions		
W 25 ² /3"		
W1	23 7/8″	
Н	15 7/8″	
H1	3 9/16″	
H2	4 3/4″	
L	47 1/2″	

PLAY-UV

REV 3 - PAGE 2/2

Select Model					
Model D1 D2					
PLAY-UV 2406	5 7/8″	5 7/8″			
PLAY-UV 2407	6 7/8″	6 7/8″			
PLAY-UV 2408	7 7/8″	7 7/8″			
PLAY-UV 2410	11″	8″			
PLAY-UV 2412	16″	8″			

Filter		
	UVFILTER-W-M9	2" MERV-9 UV Resistant White Pleated Filter
	UVFILTER-C-M7	2" MERV-7 UV Resistant Carbon Pleated Filter

Select Finish		
	Powder Coated White RAL9016	
	Other RAL :	

Project: Engineer:

Architect:

Contractor:

ARCHITECTURE - COMFORT - EFFICIENCY - IAQ

EFFECTIV-HVAC.COM